Very easy sumation (calculator allowed)

Algebra Level 4

If f ( n ) = 1 ( n + ( n + 1 ) ) 2 n ( n + 1 ) , f(n) = \frac{1}{(n + (n + 1))^2 - n(n + 1)},

then find 1 f ( 1 ) + 1 f ( 2 ) + 1 f ( 3 ) + . . . + 1 f ( 99 ) . \frac { 1 }{ f(1) } +\frac { 1 }{ f(2) } +\frac { 1 }{ f(3) } +...+\frac { 1 }{ f(99) }.


The answer is 999999.

This section requires Javascript.
You are seeing this because something didn't load right. We suggest you, (a) try refreshing the page, (b) enabling javascript if it is disabled on your browser and, finally, (c) loading the non-javascript version of this page . We're sorry about the hassle.

2 solutions

Kerry Soderdahl
Sep 1, 2015

Let g ( x ) = 1 f ( x ) g(x)=\frac{1}{f(x)}

We are asked to find:

n = 1 99 1 f ( n ) = n = 1 99 g ( n ) \sum_{n=1}^{99}\frac{1}{f(n)}=\sum_{n=1}^{99}g(n)

g ( x ) = ( x + ( x + 1 ) ) 2 x ( x + 1 ) = ( 2 x + 1 ) 2 x 2 1 g(x)= (x+(x+1))^2-x(x+1)=(2x+1)^2-x^2-1

= 4 x 2 + 4 x + 1 x 2 1 = 3 x 2 + 3 x + 1 =4x^2+4x+1-x^2-1=3x^2+3x+1

= [ x 3 + 3 x 2 + 3 x + 1 ] x 3 = ( x + 1 ) 3 x 3 =[x^3+3x^2+3x+1]-x^3=(x+1)^3-x^3

I express g ( x ) g(x) as ( x + 1 ) 3 x 3 (x+1)^3-x^3 to create what is called a telescoping sum , where successive terms will "cancel out" each other.

n = 1 99 g ( n ) = n = 1 99 ( n 3 + ( n + 1 ) 3 ) \sum_{n=1}^{99}g(n)=\sum_{n=1}^{99}(-n^3+(n+1)^3)

= 1 3 + 2 3 2 3 + 3 3 3 3 + 4 3 4 3 ± + 9 9 3 9 9 3 + 10 0 3 =-1^3+2^3-2^3+3^3-3^3+4^3-4^3\pm\ldots+99^3-99^3+100^3

= 1 + 10 0 3 = 1000000 1 = 999999 =-1+100^3=1000000-1=\boxed{999999}

F r o m f ( 1 ) = 1 ( 1 + 2 ) 2 2 L e t 1 = a a n d 2 = b f ( 1 ) = 1 ( a + b ) 2 a b = 1 a 2 + a b + b 2 C o n j u g a t e ; 1 a 2 + a b + b 2 × a b a b = a b a 3 b 3 1 f ( 1 ) = a 3 b 3 a b = 1 3 2 3 1 = 1 3 + 2 3 S o 1 f ( 1 ) + 1 f ( 2 ) + 1 f ( 3 ) + . . . + 1 f ( 99 ) = 1 3 + 2 3 2 3 + 3 3 3 3 + 4 3 . . . 99 3 + 100 3 = 1 3 + 100 3 = 999 , 999 From\quad f(1)\quad =\quad \frac { 1 }{ { (1+2) }^{ 2 }-2 } \\ Let\quad 1=a\quad and\quad 2=b\\ f(1)\quad =\quad \frac { 1 }{ { (a+b) }^{ 2 }-ab } \quad =\quad \frac { 1 }{ { a }^{ 2 }+ab{ +b }^{ 2 } } \\ Conjugate;\quad \frac { 1 }{ { a }^{ 2 }+ab{ +b }^{ 2 } } \times \frac { a-b }{ a-b } \quad =\quad \frac { a-b }{ { a }^{ 3 }-{ b }^{ 3 } } \quad \\ \frac { 1 }{ f(1) } \quad =\quad \frac { { a }^{ 3 }-{ b }^{ 3 } }{ { a }-{ b } } \quad =\quad \frac { 1^{ 3 }-{ 2 }^{ 3 } }{ -1 } \quad =\quad -{ 1 }^{ 3 }+{ 2 }^{ 3 }\\ So\quad \frac { 1 }{ f(1) } +\frac { 1 }{ f(2) } +\frac { 1 }{ f(3) } +...+\frac { 1 }{ f(99) } \quad =\quad { -1 }^{ 3 }+{ 2 }^{ 3 }-{ 2 }^{ 3 }+3^{ 3 }{ -3 }^{ 3 }+4^{ 3 }-...-{ 99 }^{ 3 }+{ 100 }^{ 3 }\quad =\quad { -1 }^{ 3 }+{ 100 }^{ 3 }\quad =\quad 999,999\\

In the question shouldn't the squared be outside of the bracket because I thought the first bit was n+ (n+1)^2 and not (n+(n+1))^2 and from the solution, I think you imply the latter.

Raghav Arora - 5 years, 9 months ago

Question is wrong

Riddhesh Deshmukh - 5 years, 8 months ago

0 pending reports

×

Problem Loading...

Note Loading...

Set Loading...