Very indirect subsitution

Calculus Level 4

0 t e t 1 e 2 t d t 0 π ln ( 1 + cos x ) d x = ? \dfrac{\displaystyle\int_{-\infty}^0 \dfrac{t e^t}{ \sqrt{1-e^{2t}} } \, dt }{ \displaystyle \int_0^\pi \ln (1 + \cos x) \, dx } = \, ?


The answer is 0.5.

This section requires Javascript.
You are seeing this because something didn't load right. We suggest you, (a) try refreshing the page, (b) enabling javascript if it is disabled on your browser and, finally, (c) loading the non-javascript version of this page . We're sorry about the hassle.

2 solutions

James Wilson
Sep 14, 2017

Start with the numerator integral. I make the substitution u = arccos ( e t ) u=\arccos(e^t) . So, 0 t e t 1 e 2 t d t = π / 2 0 ln ( cos ( u ) ) d u = 0 π / 2 ln ( cos ( u ) ) d u = 0 π / 2 ln ( cos ( 0 + π / 2 x ) ) d x = 0 π / 2 ln ( sin ( x ) ) d x \int_{-\infty}^0 \frac{te^t}{\sqrt{1-e^{2t}}}dt = -\int_{\pi/2}^0 \ln(\cos(u))du=\int_0^{\pi/2} \ln(\cos(u))du= \int_0^{\pi/2} \ln(\cos(0+\pi/2-x))dx=\int_0^{\pi/2} \ln(\sin(x))dx . Now here’s what I did for the denominator integral: 0 π ln ( 1 + cos ( x ) ) d x = 0 π ln ( 1 + cos ( x ) 1 1 cos ( x ) 1 cos ( x ) ) d x = 0 π ln ( sin 2 ( x ) ) d x 0 π ln ( 1 cos ( x ) ) d x \int_0^\pi \ln(1+\cos(x))dx=\int_0^\pi \ln(\frac{1+\cos(x)}{1}\frac{1-\cos(x)}{1-\cos(x)})dx=\int_0^\pi \ln(\sin^2(x))dx-\int_0^\pi \ln(1-\cos(x))dx = 2 0 π ln ( sin ( x ) ) d x 0 π ln ( 1 cos ( 0 + π x ) ) d x = 4 0 π / 2 ln ( sin ( x ) ) d x 0 π ln ( 1 + cos ( x ) ) d x =2\int_0^\pi \ln(\sin(x))dx -\int_0^\pi \ln(1-\cos(0+\pi-x))dx=4\int_0^{\pi/2} \ln(\sin(x))dx-\int_0^\pi \ln(1+\cos(x))dx . i.e., 0 π ln ( 1 + cos ( x ) ) d x = 4 0 π / 2 ln ( sin ( x ) ) d x 0 π ln ( 1 + cos ( x ) ) d x \int_0^\pi \ln(1+\cos(x))dx=4\int_0^{\pi/2} \ln(\sin(x))dx-\int_0^\pi \ln(1+\cos(x))dx or 0 π ln ( 1 + cos ( x ) ) d x \int_0^\pi \ln(1+\cos(x))dx = 2 0 π / 2 ln ( sin ( x ) ) d x =2\int_0^{\pi/2} \ln(\sin(x))dx . Thus, the denominator is twice as large as the numerator, which leads to the answer, 1/2.

Aarsh Verdhan
Mar 30, 2017

0 pending reports

×

Problem Loading...

Note Loading...

Set Loading...