Very long rithm

Algebra Level 1

Evaluate:- l o g 100 ! ( 2 ) + l o g 100 ! ( 3 ) + l o g 100 ! ( 4 ) + . . . . . . . . . . + l o g 100 ! ( 98 ) + l o g 100 ! ( 99 ) + l o g 100 ! ( 100 ) log_{100!}(2)+log_{100!}(3)+log_{100!}(4)+..........+log_{100!}(98)+log_{100!}(99)+log_{100!}(100)


The answer is 1.

This section requires Javascript.
You are seeing this because something didn't load right. We suggest you, (a) try refreshing the page, (b) enabling javascript if it is disabled on your browser and, finally, (c) loading the non-javascript version of this page . We're sorry about the hassle.

2 solutions

Saurabh Mallik
Aug 30, 2014

We just need to apply the laws of logarithm to solve this question.

l o g 100 ! 2 + l o g 100 ! 3 + . . . . . . . . . . . . . + l o g 100 ! 99 + l o g 100 ! 100 log_{100!}2+log_{100!}3+.............+log_{100!}99+log_{100!}100 can be written as:

l o g 100 ! ( 2 × 3 × . . . . × 99 × 100 ) log_{100!}(2\times3\times....\times99\times100) (since l o g a ( b ) + l o g a ( c ) = l o g a ( b c ) log_{a}(b)+log_{a}(c) = log_{a}(bc) - Law of Logarithm)

l o g 100 ! ( 2 × 3 × . . . . × 99 × 100 ) = l o g 100 ! ( 100 ! ) log_{100!}(2\times3\times....\times99\times100) = log_{100!}(100!) (since 100 ! = 2 × 3 × . . . . × 99 × 100 100!=2\times3\times....\times99\times100 )

l o g 100 ! ( 100 ! ) = 1 log_{100!}(100!)=1 (since l o g a ( a ) = 1 log_{a}(a)=1 - Law of Logarithm)

Thus, the answer is: l o g 100 ! 100 ! = 1 log_{100!}100!=\boxed{1}

Brett Hartley
Aug 29, 2014

l o g a ( b ) + l o g a ( c ) = l o g a ( b c ) log_{a}(b)+log_{a}(c)=log_{a}(bc)

therefore, as the listed logs of course multiply to 100! due to the definition of the factorial function, we get l o g 100 ! ( 100 ! ) log_{100!}(100!) which of course is 1 \boxed{1}

0 pending reports

×

Problem Loading...

Note Loading...

Set Loading...