Very Long Summation

Algebra Level 2

If x + 1 x = 1 x+ \dfrac{1}{x} = -1 , find

n = 1 333 ( x n + 1 x n ) \large \sum_{n=1}^{333} \left(x^n+ \frac{1}{x^{n}}\right) .

0 1 2 -1 -333

This section requires Javascript.
You are seeing this because something didn't load right. We suggest you, (a) try refreshing the page, (b) enabling javascript if it is disabled on your browser and, finally, (c) loading the non-javascript version of this page . We're sorry about the hassle.

2 solutions

Chew-Seong Cheong
May 20, 2019

The roots of x + 1 x = 1 x + \dfrac 1x = - 1 are the cubit roots of unit ω \omega (see note). Then,

S = n = 1 333 ( x n + 1 x n ) Since ω is the root. = n = 1 333 ( ω n + ω n ) Two geometric progressions = ω ( ω 333 1 ω 1 ) + ω 1 ( ω 333 1 ω 1 1 ) Since ω 3 = 1 = 0 \begin{aligned} S & = \sum_{n=1}^{333} \left(x^n + \frac 1{x^n} \right) & \small \color{#3D99F6} \text{Since }\omega \text{ is the root.} \\ & = \sum_{n=1}^{333} \left(\omega^n + \omega^{-n} \right) & \small \color{#3D99F6} \text{Two geometric progressions} \\ & = \omega \left(\frac {\omega^{333}-1}{\omega -1}\right) + \omega^{-1} \left(\frac {\omega^{-333}-1}{\omega^{-1} -1}\right) & \small \color{#3D99F6} \text{Since } \omega^3 = 1 \\ & = \boxed 0 \end{aligned}


Note:

x + 1 x = 1 x + 1 + 1 x = 0 Multiply both sides by x x 2 + x + 1 = 0 Multiply both sides by x again. x 3 + x 2 + x = 0 Add 1 to both sides x 3 + x 2 + x + 1 = 1 Note that x 2 + x + 1 = 0 x 3 = 1 \begin{aligned} x + \frac 1x & = - 1 \\ \implies x + 1 + \frac 1x & = 0 & \small \color{#3D99F6} \text{Multiply both sides by }x \\ x^2 + x + 1 & = 0 & \small \color{#3D99F6} \text{Multiply both sides by }x \text{ again.} \\ x^3 + x^2 + x & = 0 & \small \color{#3D99F6} \text{Add 1 to both sides} \\ x^3 + \color{#3D99F6} x^2 + x + 1 & = 1 & \small \color{#3D99F6} \text{Note that } x^2 + x + 1 = 0 \\ \implies x^3 & = 1 \end{aligned}

Ahmed Kassem
May 17, 2019

If

x + 1 x = 1 x+ \frac{1}{x} = -1

x = e 2 π 3 x=e^{\frac{2\pi}{3}}

It can be proved that

x n + 1 x n = 1 x^n+ \frac{1}{x^{n}} = -1 ; if n is not a multiple of 3

x n + 1 x n = 2 x^n+ \frac{1}{x^{n}} = 2 ; if n is a multiple of 3

so

n = 1 333 x n + 1 x n = 333 3 ( 1 1 + 2 ) = 0 \sum\limits_{n=1}^{333} x^n+ \frac{1}{x^{n}} = \frac{333}{3}(-1-1+2) = 0

Very nice! Small typo - you should have x = e 2 i π 3 x=e^{\frac{2i \pi}{3}} . Also you should probably explain why you don't need to consider x = e 4 i π 3 x=e^{\frac{4i \pi}{3}} , which is also a root.

Chris Lewis - 2 years ago

0 pending reports

×

Problem Loading...

Note Loading...

Set Loading...