Very much interesting

Calculus Level 5

2 3 d x x ln ( x 2 ) ln ( 3 x ) = ? \large{\displaystyle \int^{3}_{2} \dfrac{dx}{x \sqrt{ \ln \left(\frac{x}{2} \right) \ln \left(\frac{3}{x} \right)}}=\, ? }


The answer is 3.1415.

This section requires Javascript.
You are seeing this because something didn't load right. We suggest you, (a) try refreshing the page, (b) enabling javascript if it is disabled on your browser and, finally, (c) loading the non-javascript version of this page . We're sorry about the hassle.

2 solutions

Let us first substitute ln ( x ) = t \ln(x)=t

So we have the following integral:-

ln ( 2 ) ln ( 3 ) 1 ( t ln ( 2 ) ) ( ln ( 3 ) t ) d t \displaystyle \int_{\ln(2)}^{\ln(3)}\frac{1}{\sqrt{\left(t-\ln(2)\right)\left(\ln(3)-t\right)}}\,dt

Now I would like to prove a result of the Beta Function :-

Let us consider the integral

a b ( x a ) m 1 ( b x ) n 1 d x \displaystyle \int_{a}^{b}(x-a)^{m-1}(b-x)^{n-1}dx

Substitute y = x a b a \displaystyle y=\frac{x-a}{b-a} .

We get:-

( b a ) m + n 1 0 1 y m 1 ( 1 y ) n 1 d y = ( b a ) m + n 1 B ( m , n ) \displaystyle (b-a)^{m+n-1}\int_{0}^{1}y^{m-1}(1-y)^{n-1}\,dy = (b-a)^{m+n-1}\Beta\left(m,n\right) where B ( m , n ) \Beta(m,n) denotes the beta function

So in the integral given in the question we have a = ln ( 2 ) a=\ln(2) , b = ln ( 3 ) b=\ln(3) and m = n = 1 2 m=n=\frac{1}{2} .

So we have the answer as :- ( ln ( 3 ) ln ( 2 ) ) 1 2 + 1 2 1 B ( 1 2 , 1 2 ) = B ( 1 2 , 1 2 ) = Γ ( 1 2 ) Γ ( 1 2 ) Γ ( 1 ) \displaystyle (\ln(3)-\ln(2))^{\frac{1}{2}+\frac{1}{2}-1}\Beta(\frac{1}{2},\frac{1}{2}) = \Beta(\frac{1}{2},\frac{1}{2}) = \frac{\Gamma(\frac{1}{2})\Gamma(\frac{1}{2})}{\Gamma(1)}

Here Γ ( . ) \Gamma(.) denotes the Gamma Function and we know that Γ ( 1 2 ) = π \Gamma(\frac{1}{2})=\sqrt{\pi}

So our answer is Γ ( 1 2 ) Γ ( 1 2 ) = π 3.1415 \displaystyle \Gamma(\frac{1}{2})\Gamma(\frac{1}{2})= \pi \approx 3.1415

Tom Engelsman
Feb 3, 2016

Some u-substitution.....enjoy !

Your solution is great...but the picture quality is poor. I cannot see properly.

Arghyadeep Chatterjee - 3 months, 1 week ago

0 pending reports

×

Problem Loading...

Note Loading...

Set Loading...