A calculus problem by Aly Ahmed

Calculus Level pending

0 π sin x ln ( cot x 2 ) d x = ? \large \int_0^\pi \sin x \cdot \ln \left( \cot \frac x2 \right) \, dx = \, ?


The answer is 0.

This section requires Javascript.
You are seeing this because something didn't load right. We suggest you, (a) try refreshing the page, (b) enabling javascript if it is disabled on your browser and, finally, (c) loading the non-javascript version of this page . We're sorry about the hassle.

2 solutions

Vilakshan Gupta
Jul 15, 2020

0 π sin ( x ) ln ( cot x 2 ) d x = 0 π sin ( π x ) ln ( cot ( π 2 x 2 ) ) d x using the property a b f ( x ) d x = a b f ( a + b x ) d x = 0 π sin ( x ) ln ( tan x 2 ) d x = 0 π sin ( x ) ln ( cot x 2 ) d x = 0 . \begin{aligned} \int_{0}^{\pi}\sin (x) \ln\left(\cot \frac{x}{2}\right)\mathrm{d}x &=\int_{0}^{\pi}\sin(\pi-x)\ln \left(\cot \left(\frac{\pi}{2}-\frac{x}{2}\right)\right) \mathrm{d}x \hspace{35pt}\text{using the property} \color{#3D99F6}{\int_{a}^{b}f(x)~\mathrm{d}x=\int_{a}^{b}f(a+b-x)~\mathrm{d}x} \\ &=\int_{0}^{\pi}\sin (x) \ln\left(\tan \frac{x}{2}\right)\mathrm{d}x \\ &=-\int_{0}^{\pi}\sin( x) \ln\left(\cot \frac{x}{2}\right)\mathrm{d}x \\ &=\boxed{0}. \end{aligned}

Ron Gallagher
Jul 15, 2020

Note that ln(cot(x/2)) = ln(cos(x/2)) - ln(sin(x/2)). Therefore, with a substitution of z = x/2 and 2dz = dx and the identity sin(2 z) = 2 sin(z)*cos(z), the integral becomes:

integral(ln(cos(z)) * 2 * sin(z) * cos(z), {z, 0, Pi/2}) - integral(ln(sin(z)) 2 sin(z)*cos(z), {z, 0, Pi/2})

In the first of these integrals, make the substitution u = cos(z), sin(z) dz = -du. In the second integral, make the substitution u = sin(z), du = cos(z) dz.

Upon doing this, we notice that the two integrals are additive inverses of one another, so that they sum to zero.

0 pending reports

×

Problem Loading...

Note Loading...

Set Loading...