Vexing cosines

Geometry Level 4

cos 3 1 5 + cos 3 2 5 + cos 3 5 5 + cos 3 6 5 + cos 3 9 5 + cos 3 10 5 + cos 3 13 5 + cos 3 14 5 + cos 3 18 5 \cos ^{ 3 }15^\circ+\cos ^{ 3 }25^\circ+\cos ^{ 3 }55^\circ+\cos ^{ 3 }65^\circ+ \cos ^{ 3 }95^\circ+ \\ \cos ^{ 3 }105^\circ+\cos ^{ 3 }135^\circ+\cos ^{ 3 }145^\circ+\cos ^{ 3 }185^\circ

Find the value of the sum above correct to three decimals.


The answer is 0.00.

This section requires Javascript.
You are seeing this because something didn't load right. We suggest you, (a) try refreshing the page, (b) enabling javascript if it is disabled on your browser and, finally, (c) loading the non-javascript version of this page . We're sorry about the hassle.

3 solutions

Milind Prabhu
Jun 6, 2016

Since, a 3 + b 3 + c 3 3 a b c = ( a + b + c ) ( a 2 + b 2 + c 2 a b b c c a ) , a^3+b^3+c^3-3abc=(a+b+c)(a^2+b^2+c^2-ab-bc-ca), .

If a + b + c = 0 a+b+c=0 we have a 3 + b 3 + c 3 = 3 a b c a^3+b^3+c^3=3abc .

We have,

cos x + cos ( 120 x ) + cos ( 120 + x ) = 0 \cos { x } +\cos { ({ 120 }^{ \circ }-x) } +\cos { ({ 120 }^{ \circ }+x)=0 } Therefore, ( cos x ) 3 + ( cos ( 120 x ) ) 3 + ( cos ( 120 + x ) ) 3 = 3 cos x cos ( 120 x ) cos ( 120 + x ) = 1 4 cos 3 x { (\cos { x) } }^{ 3 }{ +(\cos { { (120 }^{ \circ }-x)) } }^{ 3 }{ +(\cos { { (120 }^{ \circ }+x)) } }^{ 3 }=3\cos { x } \cos { ({ 120 }^{ \circ }-x) } \cos { ({ 120 }^{ \circ }+x) } =\frac { 1 }{ 4 } \cos { 3x }

(Try to prove it!) Grouping the terms and simplifying we get,

( cos 3 1 5 + cos 3 13 5 + cos 3 10 5 ) + ( cos 3 2 5 + cos 3 14 5 + cos 3 9 5 ) + ( cos 3 6 5 + cos 3 18 5 + cos 3 5 5 ) = 1 4 ( cos 45 + cos 75 + cos 195 ) (\cos ^{ 3 } 15^{ \circ }+\cos ^{ 3 } 135^{ \circ }+\cos ^{ 3 } 105^{ \circ })+(\cos ^{ 3 } 25^{ \circ }+\cos ^{ 3 } 145^{ \circ }+\\ \cos ^{ 3 } 95^{ \circ })+(\cos ^{ 3 } 65^{ \circ }+\cos ^{ 3 } 185^{ \circ }+\cos ^{ 3 } 55^{ \circ })=\frac { 1 }{ 4 } (\cos { 45 } ^{ \circ }+\cos { 75 } ^{ \circ }+\cos { 195 } ^{ \circ })

Since, cos x + cos ( 120 x ) + cos ( 120 + x ) = 0 \cos { x } +\cos { ({ 120 }^{ \circ }-x) } +\cos { ({ 120 }^{ \circ }+x)=0 } we conclude that the sum is 1 4 ( cos 45 + cos 75 + cos 195 ) = 1 4 ( 0 ) = 0 \frac { 1 }{ 4 } (\cos { 45 } ^{ \circ }+\cos { 75 } ^{ \circ }+\cos { 195 } ^{ \circ })=\frac { 1 }{ 4 }(0)=\boxed { 0 }

and we are done!

Moderator note:

The terms in the problem seem somewhat arbitrary, and that detracts from the underlying mathematics. Your solution makes sense from the point of view of the problem creator, but it's harder to a problem solver to approach it your way. In this regard, I prefer the other two solutions which start off with cos 3 θ = 1 4 cos 3 θ + 3 4 cos θ \cos^3 \theta = \frac{1}{4} \cos 3 \theta + \frac{3}{4} \cos \theta .

Lol that makes my solution look as if it has been written by a first grader!

Adarsh Kumar - 5 years ago

@Calvin Lin Can you have a look at my solution? (I guess I forgot to check the box after writing my solution)

milind prabhu - 5 years ago

Log in to reply

Nope, I've just been really busy. Going through solutions now.

Calvin Lin Staff - 4 years, 12 months ago
Adarsh Kumar
May 29, 2016

Ahmad Saad
May 31, 2016

Congratulations for a very nice solution.

Niranjan Khanderia - 5 years ago

0 pending reports

×

Problem Loading...

Note Loading...

Set Loading...