Vibrating alert

A mobile phone lies on a flat, smooth, frictionless surface and is vibrated by the vibrating alert. The mobile phone rotates about its own axis so that the rotation angle θ \theta performs a harmonic oscillation: θ ( t ) = A cos ( ω t ) . \theta (t) = A \cos (\omega t). What is the magnitude A | A | of the vibration amplitude?

Details and Assumptions: In a vibrating mobile phone move small motors, which put an imbalance with the mass m = 0.3 g m = 0.3 \, \text{g} in rapid rotation. The imbalance has the shape of a half-cylinder with radius a = 0.24 cm a = 0.24 \, \text{cm} , which rotates about the full-cylinder axis. Since the center of gravity of the half-cylinder is not in the axis of rotation, a centrifugal force acts on the engine. One motor is attached to the points A A and B B at a distance of b = 6 cm b = 6 \, \text{cm} from the center of gravity of the mobile phone. We assume that the motors both rotate counterclockwise and have an angular velocity of ω = 2 π 1 0 4 rpm \omega = 2 \pi \cdot 10^4 \, \text{rpm} . The motors are opposite to each other aligned, so that a pure torque acts on the mobile phone. Assume that the mobile phone has the shape of a rectangle with width w = 7 cm w = 7 \, \text{cm} and length l = 14 cm l = 14 \, \text{cm} and a mass of M = 300 g . M = 300 \, \text{g}.

A 6 1 0 5 radians A \approx 6 \cdot 10^{-5} \,\text{radians} A 6 1 0 4 radians A \approx 6 \cdot 10^{-4} \,\text{radians} A 6 1 0 3 radians A \approx 6 \cdot 10^{-3} \,\text{radians} A 6 1 0 2 radians A \approx 6 \cdot 10^{-2} \,\text{radians} A 6 1 0 1 radians A \approx 6 \cdot 10^{-1} \,\text{radians}

This section requires Javascript.
You are seeing this because something didn't load right. We suggest you, (a) try refreshing the page, (b) enabling javascript if it is disabled on your browser and, finally, (c) loading the non-javascript version of this page . We're sorry about the hassle.

1 solution

Markus Michelmann
Mar 11, 2018

We assume, that at time t = 0 t = 0 the unbalance of a vibration motor is aligned along the x-axis. On a mass element Δ m \Delta m of the unbalance at the position r \vec r a centrifugal force acts due to the rotation around the origin Δ F cf = Δ m ω 2 r = Δ m ω 2 ( r cos φ r sin φ ) \Delta \vec F_\text{cf} = \Delta m \omega^2 \vec r = \Delta m \omega^2 \left( \begin{array}{c} r \cos \varphi \\ r \sin \varphi \end{array} \right) The total force on the total imbalance results from integration over the semicircular surface: F cf = d F cf = ω 2 r d m = m 1 2 π a 2 ω 2 r d A = m 1 2 π a 2 0 a [ π / 2 π / 2 ω 2 r ( cos φ sin φ ) r d φ ] d r = m ω 2 1 2 π a 2 π / 2 π / 2 ( cos φ sin φ ) d φ 0 a r 2 d r = m ω 2 1 2 π a 2 ( 2 0 ) 1 3 a 3 = 4 m ω 2 a 3 π e x \begin{aligned} \vec F_\text{cf} &= \int d \vec F_\text{cf} = \int \omega^2 \vec r \,dm = \frac{m}{\frac{1}{2} \pi a^2} \int \omega^2 \vec r \,dA \\ &= \frac{m}{\frac{1}{2} \pi a^2} \int_{0}^{a} \left[\int_{-\pi/2}^{\pi/2} \omega^2 r \left( \begin{array}{c} \cos \varphi \\ \sin \varphi \end{array} \right) \cdot r d\varphi \right] dr \\ &= \frac{m \omega^2}{\frac{1}{2} \pi a^2} \int_{-\pi/2}^{\pi/2} \left( \begin{array}{c} \cos \varphi \\ \sin \varphi \end{array} \right) d\varphi \cdot \int_{0}^{a} r^2 dr \\ &= \frac{m \omega^2}{\frac{1}{2} \pi a^2} \left( \begin{array}{c} 2 \\ 0 \end{array} \right) \cdot \frac{1}{3} a^3 = \frac{4 m \omega^2 a}{3 \pi } \vec e_x \end{aligned} As a function of time, there is a centrifugal force F cf ( t ) = 4 m ω 2 a 3 π ( cos ω t sin ω t ) \vec F_\text{cf}(t) = \frac{4 m \omega^2 a}{3 \pi } \left( \begin{array}{c} \cos \omega t \\ \sin \omega t \end{array} \right) The forces F cf \vec F_\text{cf} and F cf - \vec F_\text{cf} at the points A A and B B exert a torque T \vec T on the mobile phone: T = b e y × F cf + ( b e y ) × ( F cf ) = 8 m ω 2 a b 3 π cos ( ω t ) e z \vec T = b \vec e_y \times \vec F_\text{cf} + (-b \vec e_y) \times (-\vec F_\text{cf}) = -\frac{8 m \omega^2 a b}{3 \pi } \cos (\omega t) \cdot \vec e_z The rotational movement of the mobile phone obeys the equation I θ ¨ e z = T I \ddot \theta \vec e_z = \vec T with the moment of inertia I I , which is calculated by integration over the rectangular area of the mobile phone I = r 2 d M = M w l l / 2 l / 2 w / 2 w / 2 ( x 2 + y 2 ) d x d y = M w l ( w / 2 w / 2 x 2 d x l / 2 l / 2 d y + w / 2 w / 2 d x l / 2 l / 2 y 2 d y ) = M w l ( 2 3 ( w 2 ) 3 l + w 2 3 ( l 2 ) 3 ) = M 12 ( w 2 + l 2 ) \begin{aligned} I &= \int r^2 dM = \frac{M}{w l} \int_{-l/2}^{l/2} \int_{-w/2}^{w/2} (x^2 + y^2) dx dy \\ &= \frac{M}{w l} \left( \int_{-w/2}^{w/2} x^2 dx \cdot \int_{-l/2}^{l/2} dy + \int_{-w/2}^{w/2} dx \cdot \int_{-l/2}^{l/2} y^2 dy \right)\\ &= \frac{M}{w l} \left( \frac{2}{3} \left( \frac{w}{2} \right)^3 \cdot l + w \cdot \frac{2}{3} \left( \frac{l}{2} \right)^3 \right) =\frac{M }{12} (w^2 + l^2) \end{aligned} The equation of motion for the rotation angle yields: d 2 d t 2 θ ( t ) = T ( t ) I = 32 π m M a b w 2 + l 2 ω 2 cos ( ω t ) θ ( t ) = 32 π m M a b w 2 + l 2 cos ( ω t ) A = 32 π m M a b w 2 + l 2 6 1 0 5 \begin{aligned} & & \frac{d^2}{dt^2} \theta(t) &= \frac{T(t)}{I} = - \frac{32}{\pi} \frac{m}{M} \frac{ab}{w^2 + l^2} \omega^2 \cos (\omega t) \\ \Rightarrow & & \theta(t) &= \frac{32}{\pi} \frac{m}{M} \frac{ab}{w^2 + l^2} \cos (\omega t) \\ \Rightarrow & & A &= \frac{32}{\pi} \frac{m}{M} \frac{ab}{w^2 + l^2} \approx 6 \cdot 10^{-5} \end{aligned}

0 pending reports

×

Problem Loading...

Note Loading...

Set Loading...