Vieta?

Algebra Level 3

Let x 3 + 1 x 3 = 3 \sqrt[3]{x}+\dfrac{1}{\sqrt[3]{x}} = 3 , then find the value of x 3 + 1 x 3 x^3+\dfrac{1}{x^3}


The answer is 5778.

This section requires Javascript.
You are seeing this because something didn't load right. We suggest you, (a) try refreshing the page, (b) enabling javascript if it is disabled on your browser and, finally, (c) loading the non-javascript version of this page . We're sorry about the hassle.

4 solutions

Aareyan Manzoor
Jun 15, 2019

use the identity a 3 + b 3 = ( a + b ) 3 3 a b ( a + b ) a^3+b^3 = (a+b)^3 - 3ab(a+b) twice, i.e x + 1 x = ( x 3 + 1 x 3 ) 3 3 x 3 1 x 3 ( x 3 + 1 x 3 ) = 3 3 3 × 3 = 18 x 3 + 1 x 3 = ( x + 1 x ) 3 3 x 1 x ( x + 1 x ) = 1 8 3 3 × 18 = 5778 x+\dfrac{1}{x}= \left(\sqrt[3]{x}+\dfrac{1}{\sqrt[3]{x}} \right)^3-3\sqrt[3]{x}\dfrac{1}{\sqrt[3]{x}}\left(\sqrt[3]{x}+\dfrac{1}{\sqrt[3]{x}} \right)=3^3-3\times 3=18\\ x^3+\dfrac{1}{x^3} = \left(x+\dfrac{1}{x}\right)^3-3 x \dfrac{1}{x} \left(x+\dfrac{1}{x}\right) = 18^3-3\times 18 =\boxed{5778}

Chew-Seong Cheong
Jun 16, 2019

( x 3 + 1 x 3 ) 3 = 3 3 x + 3 x 3 + 3 x 3 + 1 x = 27 x + 1 x = 27 3 ( x 3 + 1 x 3 ) = 27 9 = 18 \begin{aligned} \left(\sqrt[3]x+\frac 1{\sqrt[3]x}\right)^3 & = 3^3 \\ x + 3\sqrt[3]x+\frac 3{\sqrt[3]x} + \frac 1x & = 27 \\ \implies x + \frac 1x & = 27 - 3\left(\sqrt[3]x+\frac 1{\sqrt[3]x}\right) \\ & = 27 - 9 = 18 \end{aligned}

Similarly,

( x + 1 x ) 3 = 1 8 3 x 3 + 3 ( x + 1 x ) + 1 x 3 = 5832 x 3 + 1 x 3 = 5832 3 ( x + 1 x ) = 5832 3 ( 18 ) = 5778 \begin{aligned} \left(x+\frac 1x\right)^3 & = 18^3 \\ x^3 + 3\left(x+\frac 1x\right) + \frac 1{x^3} & = 5832 \\ \implies x^3 + \frac 1{x^3} & = 5832 - 3\left(x+\frac 1x\right) \\ & = 5832 - 3(18) = \boxed{5778} \end{aligned}

Alexander Koran
Jul 16, 2019

We have ( x + 1 x ) 3 = x 3 + 3 x 2 1 x + 3 x 1 x 2 + 1 x 3 = x 3 + 1 x 3 + 3 ( x + 1 x ) x 3 + 1 x 3 = ( x + 1 x ) 3 3 ( x + 1 x ) (x+\frac{1}{x})^3 = x^3 + 3 \cdot x^2 \cdot \frac{1}{x} + 3 \cdot x \cdot \frac{1}{x^2} + \frac{1}{x^3} = x^3 + \frac{1}{x^3} + 3 (x+\frac{1}{x}) \implies x^3 + \frac{1}{x^3} = (x+\frac{1}{x})^3 - 3(x+\frac{1}{x}) .

So x + 1 x = ( x 3 + 1 x 3 ) 3 3 ( x 3 + 1 x 3 ) = 3 3 3 3 = 18 x + \frac{1}{x} = (\sqrt[3]{x}+\frac{1}{\sqrt[3]{x}})^3 - 3(\sqrt[3]{x}+\frac{1}{\sqrt[3]{x}}) = 3^3 - 3 \cdot 3 = 18

So x 3 + 1 x 3 = ( x + 1 x ) 3 3 ( x + 1 x ) = 1 8 3 3 18 = 5778 x^3 + \frac{1}{x^3} = (x+\frac{1}{x})^3 - 3(x+\frac{1}{x}) = 18^3 - 3 \cdot 18 = \boxed{5778}

FullSimplify [ x 3 + 1 x 3 /. Solve [ x 3 + 1 x 3 = 3 ] ] { 5778 , 5778 } \text{FullSimplify}\left[x^3+\frac{1}{x^3}\text{/.}\, \text{Solve}\left[\sqrt[3]{x}+\frac{1}{\sqrt[3]{x}}=3\right]\right] \Rightarrow \{5778,5778\}

x = 9 ± 4 5 x = 9\pm4 \sqrt{5}

Substitute y = x 1 3 y=x^{\frac13} giving y 2 3 y + 1 = 0 y^2-3 y+1=0 with the solution y = 1 2 ( 3 ± 5 ) y=\frac{1}{2} \left(3\pm\sqrt{5}\right) , which substitutes easily into x 3 + 1 x 3 x^3+\frac{1}{x^3} giving y 9 + 1 y 9 y^9+\frac{1}{y^9} with a final value of 5778.

By the way, that is the surface temperature of the Sun in Kelvin.

0 pending reports

×

Problem Loading...

Note Loading...

Set Loading...