Vieta equality and inequality

Algebra Level 3

Suppose that the equation 7 x 3 a x 2 + b x 12 = 0 7x^3-ax^2+bx-12=0 has three real, positive roots r 1 r_1 , r 2 r_2 and r 3 r_3 . If 7 r 1 2 + r 2 3 + r 3 2 = 3 \frac{7r_1}{2}+\frac{r_2}{3}+\frac{r_3}{2}=3 ,

find the values of a + b a+b .


The answer is 89.

This section requires Javascript.
You are seeing this because something didn't load right. We suggest you, (a) try refreshing the page, (b) enabling javascript if it is disabled on your browser and, finally, (c) loading the non-javascript version of this page . We're sorry about the hassle.

1 solution

Sathvik Acharya
Dec 23, 2020

7 x 3 a x 2 + b x 12 = 0 7x^3-ax^2+bx-12=0 Using Vieta's Formula , r 1 + r 2 + r 3 = a 7 \;\;\;\;\;\;\;\;\;\; r_1+r_2+r_3=\frac{a}{7} r 1 r 2 + r 2 r 3 + r 3 r 1 = b 7 r_1r_2+r_2r_3+r_3r_1=\frac{b}{7} r 1 r 2 r 3 = 12 7 \;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\; r_1r_2r_3=\frac{12}{7} Applying the AM-GM inequality , 3 = 7 r 1 2 + r 2 3 + r 3 2 3 7 r 1 2 r 2 3 r 3 2 3 = 3 3=\frac{7r_1}{2}+\frac{r_2}{3}+\frac{r_3}{2} \ge 3\sqrt[3]{\frac{7r_1}{2}\cdot \frac{r_2}{3}\cdot \frac{r_3}{2}}=3 So, by the equality condition of AM-GM, 7 r 1 2 = r 2 3 = r 3 2 = 1 r 1 = 2 7 , r 2 = 3 , r 3 = 2 \frac{7r_1}{2}=\frac{r_2}{3}=\frac{r_3}{2}=1 \implies r_1=\frac{2}{7}\;, \;\; r_2=3\;, \;\;r_3=2 a = 7 ( r 1 + r 2 + r 3 ) = 37 \implies a=7( r_1+r_2+r_3)=37 b = 7 ( r 1 r 2 + r 2 r 3 + r 3 r 1 ) = 52 \;\;\;\;\;\;\;\;\;\;\implies b=7(r_1r_2+r_2r_3+r_3r_1)=52 Therefore, a = 37 , b = 52 a + b = 89 a=37, b=52\implies \boxed{a+b=89}

0 pending reports

×

Problem Loading...

Note Loading...

Set Loading...