François Viète

Calculus Level 4

2 1 2 1 2 + 1 2 1 2 1 2 + 1 2 1 2 + 1 2 1 2 \large \frac{2}{\sqrt{\frac{1}{2}} \cdot \sqrt{\frac{1}{2} + \frac{1}{2} \sqrt{\frac{1}{2}}} \cdot \sqrt{\frac{1}{2} + \frac{1}{2} \sqrt{\frac{1}{2} + \frac{1}{2} \sqrt{\frac{1}{2}}}} \cdot \ldots}

What is the value of the expression above?

Hint: This problem can be classified as Geometry.


The answer is 3.14159.

This section requires Javascript.
You are seeing this because something didn't load right. We suggest you, (a) try refreshing the page, (b) enabling javascript if it is disabled on your browser and, finally, (c) loading the non-javascript version of this page . We're sorry about the hassle.

2 solutions

Chew-Seong Cheong
Feb 24, 2018

Let a 0 = 1 2 a_0 = \sqrt{\dfrac 12} , a 1 = 1 2 + 1 2 1 2 a_1 = \sqrt{\dfrac 12 + \dfrac 12 \sqrt{\dfrac 12}} , a 2 = 1 2 + 1 2 1 2 + 1 2 1 2 a_2 = \sqrt{\dfrac 12+\dfrac 12\sqrt{\dfrac 12 + \dfrac 12 \sqrt{\dfrac 12}}} and so on. We note that

a n = 1 2 + a n 1 2 Squaring both sides a n 2 = 1 2 + a n 1 2 2 a n 2 1 = a n 1 Let a n = cos θ n cos 2 θ n = cos θ n 1 θ n = θ n 1 2 = θ 0 2 n \begin{aligned} a_n & = \sqrt{\frac 12 + \frac {a_{n-1}}2} & \small \color{#3D99F6} \text{Squaring both sides} \\ a_n^2 & = \frac 12 + \frac {a_{n-1}}2 \\ 2a_n^2 - 1 & = a_{n-1} & \small \color{#3D99F6} \text{Let }a_n = \cos \theta_n \\ \cos 2\theta_n & = \cos \theta_{n-1} \\ \implies \theta_n & = \frac {\theta_{n-1}}2 = \frac {\color{#3D99F6}\theta_0}{2^n} \end{aligned}

Then the express is:

lim n 2 k = 0 n a k = lim n 2 k = 0 n cos θ k = lim n 2 k = 0 n cos θ 0 2 n See note. = lim n 2 sin 2 θ 0 2 n + 1 sin θ 0 2 n Note that a 0 = cos θ 0 = 1 2 θ 0 = π 4 = lim n 2 1 2 n + 1 sin π 2 n + 2 = lim n 2 n + 2 sin π 2 n + 2 = lim n π × sin π 2 n + 2 π 2 n + 2 = π 3.142 \begin{aligned} \lim_{n \to \infty} \frac 2{\prod_{k=0}^n a_k} & = \lim_{n \to \infty} \frac 2{\prod_{k=0}^n \cos \theta_k} \\ & = \lim_{n \to \infty} \frac 2{\color{#3D99F6}\prod_{k=0}^n \cos \frac {\theta_0}{2^n}} & \small \color{#3D99F6} \text{See note.} \\ & = \lim_{n \to \infty} \frac 2{\color{#3D99F6}\frac {\sin 2 \theta_0}{2^{n+1}\sin \frac {\theta_0}{2^n}}} & \small \color{#3D99F6} \text{Note that }a_0 = \cos \theta_0 = \frac 1{\sqrt 2} \implies \theta_0 = \frac \pi 4 \\ & = \lim_{n \to \infty} \frac 2{\color{#3D99F6}\frac 1{2^{n+1}\sin \frac \pi{2^{n+2}}}} \\ & = \lim_{n \to \infty} 2^{n+2} \sin \frac \pi{2^{n+2}} \\ & = \lim_{n \to \infty} \pi \times \frac {\sin \frac \pi{2^{n+2}}}{\frac \pi{2^{n+2}}} \\ & = \pi \approx \boxed{3.142} \end{aligned}


Note: Prove by induction that P n = k = 0 n cos θ 2 k = sin 2 θ 2 n + 1 sin θ 2 n \displaystyle P_n = \prod_{k=0}^n \cos \frac \theta{2^k} = \frac {\sin 2\theta}{2^{n+1} \sin \frac \theta{2^n}} for all n 0 n \ge 0 .

For n = 0 n=0 , P 0 = k = 0 0 cos θ 2 k = cos θ = sin 2 θ sin θ \displaystyle P_0 = \prod_{k=0}^0 \cos \frac \theta{2^k} = \cos \theta = \frac {\sin 2\theta}{\sin \theta} . Therefore, the claim is true for n = 0 n = 0 . Now assuming that the claim is true for n n , then P n + 1 = k = 0 n + 1 cos θ 2 k = ( k = 0 n cos θ 2 k ) cos θ 2 n + 1 = sin 2 θ 2 n + 1 sin θ 2 n cos θ 2 n + 1 = sin 2 θ 2 n + 2 sin θ 2 n + 1 \displaystyle P_{n+1} = \prod_{k=0}^{n+1} \cos \frac \theta{2^k} = \left(\prod_{k=0}^n \cos \frac \theta{2^k}\right)\cdot \cos \frac \theta{2^{n+1}} = \frac {\sin 2\theta}{2^{n+1} \sin \frac \theta{2^n}} \cdot \cos \frac \theta{2^{n+1}} = \frac {\sin 2\theta}{2^{n+2} \sin \frac \theta{2^{n+1}}} . Therefore, the claim is true for n + 1 n+1 and hence true for all n 0 n \ge 0 .

Wow !! I like your approach Sir. : )

Naren Bhandari - 3 years, 3 months ago

Log in to reply

Glad that you like it. We have to recognize forms.

Chew-Seong Cheong - 3 years, 3 months ago

Let C C be a circle of radius r > 0 r > 0 and ( A n ) n 3 (A_n)_{n \ge 3} the sequence of areas of the regular polygons inscribed in C C with n n sides, then: A n = 1 2 n r 2 sin ( 2 π n ) = n r 2 sin ( π n ) cos ( π n ) and A 2 n = 1 2 2 n r 2 sin ( 2 π 2 n ) = 1 2 2 n r 2 sin ( π n ) A_n = \frac{1}{2} n r^2 \sin(\frac{2 \pi}{n}) = n r^2 \sin(\frac{\pi}{n}) \cos(\frac{\pi}{n}) \quad \text{ and } \quad A_{2n} = \frac{1}{2} 2n r^2 \sin(\frac{2 \pi}{2n}) = \frac{1}{2} 2n r^2 \sin(\frac{\pi}{n}) \Rightarrow A n A 2 n = cos ( π n ) A n = lim k A n A 2 n A 2 n A 2 2 n A 2 2 n A 2 3 n A 2 k 1 n A 2 k n A 2 k n = cos ( π n ) cos ( π 2 n ) cos ( π 4 n ) cos ( π 2 k n ) π r 2 \displaystyle \frac{A_n}{A_{2n}} = \cos(\frac{\pi}{n}) \Rightarrow A_n = \lim_{k \to \infty} \frac{A_n}{A_{2n}} \cdot \frac{A_{2n}}{A_{2^2 n}} \cdot \frac{A_{2^2n}}{A_{2^3n}} \cdot \ldots \cdot \frac{A_{2^{k - 1}n}}{A_{2^{k}n}} \cdot A_{2^k n} = \cos(\frac{\pi}{n}) \cdot \cos(\frac{\pi}{2n}) \cdot \cos(\frac{\pi}{4n}) \cdot \ldots \cdot \cos(\frac{\pi}{2^k n}) \cdot \ldots \cdot \pi r^2 because lim k A 2 k n = π r 2 = Area of the circle \lim_{k \to \infty} A_{2^k n} = \pi r^2 = \text{ Area of the circle} , (This is known like Archimedes's process) and this implies that π = 1 2 n sin ( 2 π n ) cos ( π n ) cos ( π 2 n ) cos ( π 4 n ) cos ( π 2 k n ) \pi = \frac{\frac{1}{2} n \sin(\frac{2 \pi}{n})}{\cos(\frac{\pi}{n}) \cdot \cos(\frac{\pi}{2n}) \cdot \cos(\frac{\pi}{4n}) \cdot \ldots \cdot \cos(\frac{\pi}{2^k n}) \cdot \ldots \cdot} Substituing n = 4 n = 4 , like Viète did, and knowing that cos ( π 4 ) = 1 2 \cos(\frac{\pi}{4}) = \sqrt{\frac{1}{2}} and that for angle cos ( α 2 ) = 1 2 + 1 2 cos ( α ) \cos(\frac{\alpha}{2}) = \sqrt{\frac{1}{2} + \frac{1}{2} \cos(\alpha)} we get the result.

0 pending reports

×

Problem Loading...

Note Loading...

Set Loading...