f ( x ) = x 3 + x 2 − 3 x + 4 Let the zeroes of the function above be α , β , γ . Find f ′ ( α ) f ′ ( β ) f ′ ( γ ) .
This section requires Javascript.
You are seeing this because something didn't load right. We suggest you, (a) try
refreshing the page, (b) enabling javascript if it is disabled on your browser and,
finally, (c)
loading the
non-javascript version of this page
. We're sorry about the hassle.
yes, that's a way of using the Vieta's formula to work through the calculations.
Let us say, x 3 + x 2 − 3 x + 4 = ( x − α ) ( x − β ) ( x − γ )
f ′ ( x ) = ( x − α ) ( x − β ) + ( x − β ) ( x − γ ) + ( x − α ) ( x − γ )
f ′ ( α ) = ( α − β ) ( α − γ )
f ′ ( β ) = ( β − α ) ( β − γ )
f ′ ( γ ) = ( γ − α ) ( γ − β )
f ′ ( α ) f ′ ( β ) f ′ ( γ ) = − ( α − β ) 2 ( β − γ ) 2 ( γ − α ) 2
By the definition of discriminant,
Δ = ( α − β ) 2 ( β − γ ) 2 ( γ − α ) 2
For a cubic polynomial p x 3 + q x 2 + r x + s ,
Δ = q 2 r 2 − 4 p r 3 − 4 q 3 s − 2 7 p 2 s 2 + 1 8 p q r s
which is equal to − 5 4 7 for the given polynomial.
Hence,
f ′ ( α ) f ′ ( β ) f ′ ( γ ) = − ( α − β ) 2 ( β − γ ) 2 ( γ − α ) 2 = − Δ = 5 4 7
Since your problem is titled as "vieta", shouldn't you be using the vieta's formula approach instead?
Problem Loading...
Note Loading...
Set Loading...
Since α , β and γ are roots of f ( x ) = x 3 + x 2 − 3 x + 4 , by Vieta's formulas:
⎩ ⎪ ⎨ ⎪ ⎧ α + β + γ α β + β γ + γ α α β γ = − 1 = − 3 = − 4
And since f ′ ( x ) = 3 x 2 + 2 x − 3 , then we have:
f ′ ( α ) f ′ ( β ) f ′ ( γ ) = ( 3 α 2 + 2 α − 3 ) ( 3 β 2 + 2 β − 3 ) ( 3 γ 2 + 2 γ − 3 ) = 2 7 α 2 β 2 γ 2 + 1 8 ( α 2 β 2 γ + α 2 β γ 2 + α β 2 γ 2 ) − 2 7 ( α 2 β 2 + β 2 γ 2 + γ 2 α 2 ) + 1 2 ( α 2 β γ + α β 2 γ + α β γ 2 ) − 1 8 ( α 2 β + β 2 γ + γ 2 α + α β 2 + β γ 2 + γ α 2 ) + 8 α β γ + 2 7 ( α 2 + β 2 + γ 2 ) − 1 2 ( α β + β γ + γ α ) + 1 8 ( α + β + γ ) − 2 7 = 2 7 ( α β γ ) 2 + 1 8 α β γ ( α β + β γ + γ α ) − 2 7 ( α 2 β 2 + β 2 γ 2 + γ 2 α 2 ) + 1 2 α β γ ( α + β + γ ) − 1 8 ( [ α + β + γ ] [ α β + β γ + γ α ] − 3 α β γ ) + 8 α β γ + 2 7 ( α 2 + β 2 + γ 2 ) − 1 2 ( α β + β γ + γ α ) + 1 8 ( α + β + γ ) − 2 7 [ See Note ] = 2 7 ( − 4 ) 2 + 1 8 ( − 4 ) ( − 3 ) − 2 7 ( 1 ) + 1 2 ( − 4 ) ( − 1 ) − 1 8 ( [ − 1 ] [ − 3 ] − 3 [ − 4 ] ) + 8 ( − 4 ) + 2 7 ( 7 ) − 1 2 ( − 3 ) + 1 8 ( − 1 ) − 2 7 = 5 4 7
Note
α 2 + β 2 + γ 2 α 3 + β 3 + γ 3 α 4 + β 4 + γ 4 = ( α + β + γ ) 2 − 2 ( α β + β γ + γ α ) = ( − 1 ) 2 − 2 ( − 3 ) = 7 = ( α + β + γ ) ( α 2 + β 2 + γ 2 ) − ( α β + β γ + γ α ) ( α + β + γ ) + 3 α β γ = ( − 1 ) ( 7 ) − ( − 3 ) ( − 1 ) + 3 ( − 4 ) = − 2 2 = ( α + β + γ ) ( α 3 + β 3 + γ 3 ) − ( α β + β γ + γ α ) ( α 2 + β 2 + γ 2 ) + α β γ ( α + β + γ ) = ( − 1 ) ( − 2 2 ) − ( − 3 ) ( 7 ) + ( − 4 ) ( − 1 ) = 4 7
α 2 β 2 + β 2 γ 2 + γ 2 α 2 = 2 ( α 2 + β 2 + γ 2 ) 2 − ( α 4 + β 4 + γ 4 ) = 2 ( 7 ) 2 − 4 7 = 1