Vieta's Derivatives

Calculus Level 5

f ( x ) = x 3 + x 2 3 x + 4 f(x)=x^{3}+x^{2}-3x+4 Let the zeroes of the function above be α , β , γ \alpha,\beta,\gamma . Find f ( α ) f ( β ) f ( γ ) f'(\alpha)f'(\beta)f'(\gamma) .

Inspiration .


The answer is 547.

This section requires Javascript.
You are seeing this because something didn't load right. We suggest you, (a) try refreshing the page, (b) enabling javascript if it is disabled on your browser and, finally, (c) loading the non-javascript version of this page . We're sorry about the hassle.

2 solutions

Chew-Seong Cheong
Jul 22, 2015

Since α \alpha , β \beta and γ \gamma are roots of f ( x ) = x 3 + x 2 3 x + 4 f(x) = x^3 + x^2 - 3x + 4 , by Vieta's formulas:

{ α + β + γ = 1 α β + β γ + γ α = 3 α β γ = 4 \begin{cases} \alpha + \beta + \gamma & = -1 \\ \alpha \beta + \beta \gamma + \gamma \alpha & = - 3 \\ \alpha \beta \gamma & = -4 \end{cases}

And since f ( x ) = 3 x 2 + 2 x 3 f'(x) = 3x^2 + 2x -3 , then we have:

f ( α ) f ( β ) f ( γ ) = ( 3 α 2 + 2 α 3 ) ( 3 β 2 + 2 β 3 ) ( 3 γ 2 + 2 γ 3 ) = 27 α 2 β 2 γ 2 + 18 ( α 2 β 2 γ + α 2 β γ 2 + α β 2 γ 2 ) 27 ( α 2 β 2 + β 2 γ 2 + γ 2 α 2 ) + 12 ( α 2 β γ + α β 2 γ + α β γ 2 ) 18 ( α 2 β + β 2 γ + γ 2 α + α β 2 + β γ 2 + γ α 2 ) + 8 α β γ + 27 ( α 2 + β 2 + γ 2 ) 12 ( α β + β γ + γ α ) + 18 ( α + β + γ ) 27 = 27 ( α β γ ) 2 + 18 α β γ ( α β + β γ + γ α ) 27 ( α 2 β 2 + β 2 γ 2 + γ 2 α 2 ) + 12 α β γ ( α + β + γ ) 18 ( [ α + β + γ ] [ α β + β γ + γ α ] 3 α β γ ) + 8 α β γ + 27 ( α 2 + β 2 + γ 2 ) 12 ( α β + β γ + γ α ) + 18 ( α + β + γ ) 27 [ See Note ] = 27 ( 4 ) 2 + 18 ( 4 ) ( 3 ) 27 ( 1 ) + 12 ( 4 ) ( 1 ) 18 ( [ 1 ] [ 3 ] 3 [ 4 ] ) + 8 ( 4 ) + 27 ( 7 ) 12 ( 3 ) + 18 ( 1 ) 27 = 547 \begin{aligned} f'(\alpha)f'(\beta)f'(\gamma) & = (3\alpha^2 + 2\alpha -3) (3\beta^2 + 2\beta -3) (3\gamma^2 + 2\gamma -3) \\ & = 27\alpha^2 \beta^2\gamma^2 + 18(\alpha^2 \beta^2\gamma + \alpha^2 \beta\gamma^2 +\alpha\beta^2\gamma^2) \\ & \quad -27(\alpha^2 \beta^2 + \beta^2 \gamma^2 + \gamma^2\alpha^2) + 12(\alpha^2 \beta\gamma+\alpha \beta^2\gamma + \alpha\beta\gamma^2) \\ & \quad -18 (\alpha^2 \beta + \beta^2\gamma + \gamma^2\alpha + \alpha\beta^2 + \beta \gamma^2 + \gamma\alpha^2) \\ & \quad +8\alpha \beta \gamma + 27(\alpha^2 + \beta^2 + \gamma^2) -12(\alpha\beta + \beta\gamma + \gamma\alpha ) \\ & \quad + 18(\alpha + \beta + \gamma) - 27 \\ & = 27(\alpha\beta\gamma)^2 + 18 \alpha \beta \gamma (\alpha\beta + \beta\gamma + \gamma\alpha) \\ & \quad -27(\color{#3D99F6}{\alpha^2 \beta^2 + \beta^2\gamma^2 + \gamma^2 \alpha^2}) + 12\alpha\beta\gamma(\alpha + \beta + \gamma) \\ & \quad -18 ([\alpha + \beta + \gamma][\alpha\beta + \beta \gamma + \gamma\alpha]-3\alpha \beta \gamma) \\ & \quad +8\alpha \beta \gamma + 27(\color{#3D99F6}{\alpha^2 + \beta^2 + \gamma^2}) -12(\alpha\beta + \beta\gamma + \gamma\alpha ) \\ & \quad + 18(\alpha + \beta + \gamma) - 27 \quad \quad \quad \quad \color{#3D99F6} {[\text{See Note}]} \\ & = 27(-4)^2 + 18(-4)(-3) -27(\color{#3D99F6}{1}) + 12(-4)(-1) \\ & \quad -18 ([-1][-3]-3[-4]) +8(-4) + 27(\color{#3D99F6}{7}) -12(-3) \\ & \quad + 18(-1) - 27 \\ & = \boxed{547} \end{aligned}

Note \color{#3D99F6} {\text {Note} }

α 2 + β 2 + γ 2 = ( α + β + γ ) 2 2 ( α β + β γ + γ α ) = ( 1 ) 2 2 ( 3 ) = 7 α 3 + β 3 + γ 3 = ( α + β + γ ) ( α 2 + β 2 + γ 2 ) ( α β + β γ + γ α ) ( α + β + γ ) + 3 α β γ = ( 1 ) ( 7 ) ( 3 ) ( 1 ) + 3 ( 4 ) = 22 α 4 + β 4 + γ 4 = ( α + β + γ ) ( α 3 + β 3 + γ 3 ) ( α β + β γ + γ α ) ( α 2 + β 2 + γ 2 ) + α β γ ( α + β + γ ) = ( 1 ) ( 22 ) ( 3 ) ( 7 ) + ( 4 ) ( 1 ) = 47 \begin{aligned} \color{#3D99F6} {\alpha^2 + \beta^2 + \gamma^2} & = (\alpha + \beta + \gamma)^2 - 2(\alpha\beta + \beta \gamma + \gamma\alpha) \\ & = (-1)^2 -2(-3) = \color{#3D99F6}{7} \\ \alpha^3 + \beta^3 + \gamma^3 & = (\alpha + \beta + \gamma)(\alpha^2 + \beta^2 + \gamma^2) - (\alpha\beta + \beta \gamma + \gamma\alpha)(\alpha + \beta + \gamma) \\ & \quad + 3\alpha \beta \gamma \\ & = (-1)(7)-(-3)(-1)+3(-4) = -22 \\ \color{#D61F06} {\alpha^4 + \beta^4 + \gamma^4} & = (\alpha + \beta + \gamma)(\alpha^3 + \beta^3 + \gamma^3) - (\alpha\beta + \beta \gamma + \gamma\alpha)\\ & \quad (\alpha^2 + \beta^2 + \gamma^2) + \alpha \beta \gamma(\alpha + \beta + \gamma) \\ & = (-1)(-22)-(-3)(7)+(-4)(-1) = \color{#D61F06}{47} \end{aligned}

α 2 β 2 + β 2 γ 2 + γ 2 α 2 = ( α 2 + β 2 + γ 2 ) 2 ( α 4 + β 4 + γ 4 ) 2 = ( 7 ) 2 47 2 = 1 \begin{aligned} \color{#3D99F6}{\alpha^2 \beta^2 + \beta^2 \gamma ^2 + \gamma^2 \alpha^2} & = \frac{(\color{#3D99F6}{\alpha^2 + \beta^2 + \gamma^2})^2 - (\color{#D61F06} {\alpha^4 + \beta^4 + \gamma^4})}{2} \\ & = \frac{ (\color{#3D99F6}{7})^2 - \color{#D61F06}{47}}{2} = \color{#3D99F6}{1} \end{aligned}

Moderator note:

yes, that's a way of using the Vieta's formula to work through the calculations.

Let us say, x 3 + x 2 3 x + 4 = ( x α ) ( x β ) ( x γ ) x^3 + x^2 - 3x + 4 = (x-\alpha)(x-\beta)(x - \gamma)

f ( x ) = ( x α ) ( x β ) + ( x β ) ( x γ ) + ( x α ) ( x γ ) f'(x) = (x-\alpha)(x-\beta) + (x-\beta)(x-\gamma) + (x-\alpha)(x-\gamma)

f ( α ) = ( α β ) ( α γ ) f'(\alpha) = (\alpha - \beta)(\alpha - \gamma)

f ( β ) = ( β α ) ( β γ ) f'(\beta) = (\beta - \alpha)(\beta - \gamma)

f ( γ ) = ( γ α ) ( γ β ) f'(\gamma) = (\gamma - \alpha)(\gamma - \beta)

f ( α ) f ( β ) f ( γ ) = ( α β ) 2 ( β γ ) 2 ( γ α ) 2 f'(\alpha)f'(\beta)f'(\gamma) = -(\alpha - \beta)^2(\beta - \gamma)^2(\gamma - \alpha)^2

By the definition of discriminant,

Δ = ( α β ) 2 ( β γ ) 2 ( γ α ) 2 \Delta = (\alpha - \beta)^2(\beta - \gamma)^2(\gamma - \alpha)^2

For a cubic polynomial p x 3 + q x 2 + r x + s px^3 + qx^2 + rx + s ,

Δ = q 2 r 2 4 p r 3 4 q 3 s 27 p 2 s 2 + 18 p q r s \Delta = q^2r^2 - 4pr^3 - 4q^3s - 27p^2s^2 + 18pqrs

which is equal to 547 -547 for the given polynomial.

Hence,

f ( α ) f ( β ) f ( γ ) = ( α β ) 2 ( β γ ) 2 ( γ α ) 2 = Δ = 547 f'(\alpha)f'(\beta)f'(\gamma) = -(\alpha - \beta)^2(\beta - \gamma)^2(\gamma - \alpha)^2 = -\Delta = \boxed{547}

Moderator note:

Since your problem is titled as "vieta", shouldn't you be using the vieta's formula approach instead?

0 pending reports

×

Problem Loading...

Note Loading...

Set Loading...