Vieta's Formula 2

Algebra Level 2

Let α \alpha and β \beta denote the roots of 3 x 2 + 3 x 5 = 0 3x^2+3x-5=0 . What is the value of α 3 + β 3 \alpha^3+\beta^3 ?


The answer is -6.

This section requires Javascript.
You are seeing this because something didn't load right. We suggest you, (a) try refreshing the page, (b) enabling javascript if it is disabled on your browser and, finally, (c) loading the non-javascript version of this page . We're sorry about the hassle.

2 solutions

Junghwan Han
Aug 16, 2019

α + β = 1 \alpha+\beta=-1 α β = 5 3 \alpha\beta=-\frac{5}{3} α 3 + β 3 = ( α + β ) 3 3 α β ( α + β ) = ( 1 ) 3 3 × 5 3 ( 1 ) = 6 \alpha^3+\beta^3=(\alpha+\beta)^3-3\alpha\beta(\alpha+\beta)=(-1)^3-3\times-\frac{5}{3}(-1)=-6

Pi Han Goh
Aug 18, 2019

3 x 2 + 3 x 5 = 0 3 x 3 = 3 x 2 + 5 x = ( 3 x 5 ) + 5 x = 8 x 5 3x^2 + 3x - 5 = 0\quad \Rightarrow \quad 3x^3 = -3x^2 + 5x = (3x-5) + 5x = 8x - 5

Thus, { 3 α 3 = 8 α 5 3 β 3 = 8 β 5 3 ( α 3 + β 3 ) = 8 ( α + β ) 10 α 3 + β 3 = 1 3 ( 8 3 3 10 ) = 6 . \begin{cases} 3\alpha^3 = 8\alpha - 5 \\ 3\beta^3 = 8\beta - 5 \end{cases} \quad \Rightarrow \quad 3(\alpha^3 + \beta^3) = 8(\alpha + \beta) - 10 \quad \Rightarrow \quad \alpha^3 + \beta^3 =\frac13 (8\cdot -\frac33 - 10) = \boxed{-6}.

0 pending reports

×

Problem Loading...

Note Loading...

Set Loading...