Vieta's is the easy part

A quartic polynomial has the very interesting property that the coefficient of x n x^{ n } for n = 0 , 1 , 2 , 3 , 4 n=0,1,2,3,4 is given by j = 1 n + 1 k = 1 5 ϕ ( k j ) ϕ ( k ) \displaystyle \sum _{ j=1 }^{ n+1 }{ \sum _{ k=1 }^{ 5 }{ \frac { \phi (k^{ j }) }{ \phi (k) } } } .

If the sum of the roots of this polynomial is X X , and the product of the roots of this polynomial is Y Y , calculate Y X Y-X .

If the answer is in the form p q \dfrac { p }{ q } where p p and q q are co-prime positive integers, submit your answer as p + q + 145 p+q+145 .

Notation : ϕ ( k ) \phi (k) denotes the Euler's totient function .


The answer is 1729.

This section requires Javascript.
You are seeing this because something didn't load right. We suggest you, (a) try refreshing the page, (b) enabling javascript if it is disabled on your browser and, finally, (c) loading the non-javascript version of this page . We're sorry about the hassle.

1 solution

Chris Callahan
Jan 6, 2016

ϕ ( k j ) ϕ ( k ) = k j p k j ( 1 1 p ) k p k ( 1 1 p ) \frac { \phi (k^{ j }) }{ \phi (k) } =\frac { k^{ j }\prod _{ p|k^{ j } }^{ }{ (1-\frac { 1 }{ p } ) } }{ k\prod _{ p|k }^{ }{ (1-\frac { 1 }{ p } ) } } , where the product is taken over all distinct prime divisors of k j k^{ j } and k k . Note that if j is a natural number, k k and k j k^{ j } have the same distinct prime divisors. Thus the products cancel and we find that ϕ ( k j ) ϕ ( k ) = k j k = k j 1 \frac { \phi (k^{ j }) }{ \phi (k) } =\frac { k^{ j } }{ k } =k^{ j-1 } . Note that this is true even for k = 1 k =1 . Thus, we have j = 1 n + 1 k = 1 5 ( k j 1 ) = j = 0 n k = 1 5 k j \sum _{ j=1 }^{ n+1 }{ \sum _{ k=1 }^{ 5 }{ (k^{ j-1 }) } } =\sum _{ j=0 }^{ n }{ \sum _{ k=1 }^{ 5 }{ k^{ j } } } .

Define a function f ( j ) = k = 1 5 k j f(j)=\sum_{ k=1 }^{ 5 }{ k^{ j } } . We then have the coefficient of x n x^{ n } as j = 0 n f ( j ) \sum _{ j=0 }^{ n }{ f(j) } . Calculate f ( 0 ) , f ( 1 ) , f ( 2 ) , f ( 3 ) , a n d f ( 4 ) f(0), f(1), f(2), f(3), and f(4) . You'll find that

f ( 0 ) = 5 f(0)=5

f ( 1 ) = 5 ( 6 ) 2 = 15 f(1)=\frac { 5(6) }{ 2 } =15

f ( 2 ) = 5 ( 6 ) ( 11 ) 6 = 55 f(2)=\frac { 5(6)(11) }{ 6 } =55

f ( 3 ) = 1 5 2 = 225 f(3)=15^{ 2 }=225

f ( 4 ) = 1 4 + 2 4 + 3 4 + 4 4 + 5 4 = 979 f(4)=1^{ 4 }+2^{ 4 }+3^{ 4 }+4^{ 4 }+5^{ 4 }=979

Thus, the coefficient of x 0 x^{ 0 } is 5, that of x 1 x^{ 1 } is 5 + 15 = 20 5+15=20 , that of x 2 x^{ 2 } is 5 + 15 + 55 = 75 5+15+55=75 , that of x 3 x^{ 3 } is 5 + 15 + 55 + 225 = 300 5+15+55+225=300 , and that of x 4 x^{ 4 } is 5 + 15 + 55 + 225 + 979 = 1279 5+15+55+225+979=1279 .

So, the polynomial is 1279 x 4 + 300 x 3 + 75 x 2 + 20 x + 5 1279x^{ 4 }+300x^{ 3 }+75x^{ 2 }+20x+5 . By vieta's, X = 300 1279 X=\frac { -300 }{ 1279 } and Y = 5 1279 Y=\frac { 5 }{ 1279 } . Therefore, Y X = 305 1279 Y-X=\frac { 305 }{ 1279 } . So, p + q + 145 = 305 + 1279 + 145 = 1729 p+q+145=305+1279+145=\boxed { 1729 }

0 pending reports

×

Problem Loading...

Note Loading...

Set Loading...