Vieta's Job

Algebra Level 4

{ a + b + c + d = 2 a 2 + b 2 + c 2 + d 2 = 4 a 3 + b 3 + c 3 + d 3 = 5 a 4 + b 4 + c 4 + d 4 = 8 \begin{cases} \begin{aligned} a+b+c+d&=2 \\ a^2+b^2+c^2+d^2 & =4 \\ a^3+b^3+c^3+d^3 &=5 \\ a^4+b^4+c^4+d^4 & =8 \end{aligned} \end{cases}

Given the above, find a 25 + b 25 + c 25 + d 25 a^{25}+b^{25}+c^{25}+d^{25} .

167761 167761 167762 167762 167763 167763 167760 167760

This section requires Javascript.
You are seeing this because something didn't load right. We suggest you, (a) try refreshing the page, (b) enabling javascript if it is disabled on your browser and, finally, (c) loading the non-javascript version of this page . We're sorry about the hassle.

2 solutions

The problem can be solved using Newton's sums . Let P n = a n + b n + c n + d n P^n = a^n + b^n + c^n + d^n , where n n is an positive integer, S 1 = a + b + c + d = 2 S_1 = a + b + c + d = 2 , S 2 = a b + a c + a d + b c + b d + c d S_2 = ab + ac+ ad + bc + bd + cd , S 3 = a b c + a b d + a c d + b c d S_3 = abc+ abd + acd + bcd , and S 4 = a b c d S_4 = abcd . Then

P 1 = S 1 = 2 S 1 = 2 P 2 = S 1 P 1 2 S 2 = 4 2 S 2 = 4 S 2 = 0 P 3 = S 1 P 2 S 2 P 1 + 3 S 3 = 8 0 + 3 S 3 = 5 S 3 = 1 P 4 = S 1 P 3 S 2 P 2 + S 3 P 1 4 S 4 = 10 0 2 4 S 4 = 8 S 4 = 0 P n = S 1 P n 1 S 2 P n 2 + S 3 P n 3 S 4 P n 4 = 2 P n 1 P n 3 \begin{aligned} P_1 & = S_1 = 2 & \implies S_1 = 2 \\ P_2 & = S_1 P_1 - 2S_2 = 4 - 2S_2 = 4 & \implies S_2 = 0 \\ P_3 & = S_1 P_2 - S_2P_1 + 3S_3 = 8 - 0 + 3S_3 = 5 & \implies S_3 = -1 \\ P_4 & = S_1 P_3 - S_2P_2 + S_3P_1 - 4S_4 = 10 - 0 - 2 - 4S_4 = 8 & \implies S_4 = 0 \\ P_n & = S_1 P_{n-1} - S_2P_{n-2} + S_3P_{n-3} - S_4P_{n-4} = 2P_{n-1} - P_{n-3} \end{aligned}

We can use the linear recurrence relation P n = 2 P n 1 P n 3 P_n = 2P_{n-1} - P_{n-3} to solve progressively from P 5 P_5 to P 25 P_{25} . Alternatively, we solve the linear recurrence relation and we get P n = φ n + ( 1 φ ) 2 + 1 P_n = \varphi^n + (1-\varphi)^2 + 1 , where φ = 1 + 5 2 \varphi = \dfrac {1+\sqrt 5}2 is the golden ratio (see note). Then P 25 = φ 25 + ( 1 φ ) 25 + 1 = 167762 P_{25} = \varphi^{25} + (1-\varphi)^{25} + 1 = \boxed {167762} .


Note: The characteristic equation of P n = 2 P n 1 P n 3 P_n = 2P_{n-1} - P_{n-3} is:

r 3 = 2 r 2 1 r 3 r 2 1 = 0 ( r 1 ) ( r 2 r 1 ) = 0 r = 1 , φ , 1 φ P n = c 1 + c 2 φ n + c 3 ( 1 φ ) n \begin{aligned} r^3 & = 2r^2 - 1 \\ r^3-r^2 - 1 & = 0 \\ (r-1)(r^2 - r -1) & = 0 \\ \implies r & = 1, \varphi, 1 - \varphi \\ \implies P_n & = c_1 + c_2 \varphi^n+c_3(1 - \varphi)^n \end{aligned}

P 1 : c 1 + c 2 φ + c 3 ( 1 φ ) = 2 P 2 : c 1 + c 2 φ 2 + c 3 ( 1 φ ) 2 = c 1 + c 2 ( 1 + φ ) + c 3 ( 2 φ ) = 4 P 3 : c 1 + c 2 φ 3 + c 3 ( 1 φ ) 3 = c 1 + c 2 ( 1 + 2 φ ) + c 3 ( 3 2 φ ) = 5 P 2 P 1 : c 2 + c 3 = 2 P 3 P 2 : c 2 φ + c 3 ( 1 φ ) = 1 \begin{array} {rl} P_1: & c_1 + c_2 \varphi+c_3(1 - \varphi) = 2 \\ P_2: & c_1 + c_2 \varphi^2+c_3(1 - \varphi)^2 = c_1 + c_2(1+\varphi)+c_3(2 - \varphi) = 4 \\ P_3: & c_1 + c_2 \varphi^3+c_3(1 - \varphi)^3 = c_1 + c_2(1+2\varphi)+c_3(3-2\varphi) = 5 \\ P_2-P_1: & c_2 + c_3 = 2 \\ P_3-P_2: & c_2\varphi + c_3(1-\varphi) = 1 \end{array}

( 1 φ ) ( P 2 P 1 ) ( P 3 P 2 ) : c 2 ( 1 2 φ ) = 1 2 φ c 2 = 1 P 2 P 1 : 1 + c 3 = 2 c 3 = 1 P 1 : c 1 + φ + 1 φ = 2 c 1 = 1 \begin{array} {rll} (1-\varphi)(P_2-P_1)-(P_3-P_2): & c_2(1-2\varphi) = 1-2\varphi & \blue{\implies c_2 = 1} \\ P_2-P_1: & 1 + c_3 = 2 & \blue{\implies c_3 = 1} \\ P_1: & c_1 + \varphi+ 1 - \varphi = 2 & \blue{\implies c_1 = 1} \end{array}

Newton Sums, nice!

Mahdi Raza - 1 year ago

Log in to reply

Glad that you like it.

Chew-Seong Cheong - 1 year ago

Rockin' great solution, Chew-Seong!

tom engelsman - 4 months, 3 weeks ago

Log in to reply

Newton was great!

Chew-Seong Cheong - 4 months, 3 weeks ago
ChengYiin Ong
Jun 8, 2020

From @Chew-Seong Cheong 's solution, we can also know that S 1 = 2 , S 2 = 0 , S 3 = 1 , S 4 = 0 S_1=2, S_2=0, S_3=-1, S_4=0 , so a , b , c , d a,b,c,d are the roots of the equation x 4 2 x 3 + x = 0 x^4-2x^3+x=0 and the roots are 0 , 1 , ϕ , 1 ϕ 0, 1, \phi, 1-\phi . Substitute them in and we get our answer.

0 pending reports

×

Problem Loading...

Note Loading...

Set Loading...