Visiting various fields of mathematics!

Algebra Level 3

If x 2 + y 2 30 x 40 y + 2 4 2 = 0 x^2+y^2-30x-40y+24^2=0 , then the largest possible value of y x \large \frac{y}{x} can be written as m n \large \frac{m}{n} where m , n m,n are relatively prime positive integers, find m + n . m+n.


The answer is 161.

This section requires Javascript.
You are seeing this because something didn't load right. We suggest you, (a) try refreshing the page, (b) enabling javascript if it is disabled on your browser and, finally, (c) loading the non-javascript version of this page . We're sorry about the hassle.

2 solutions

Jerry McKenzie
Dec 30, 2017

Rewriting by completing the square, it becomes ( x 15 ) 2 + ( y 20 ) 2 = 7 2 \large (x-15)^{2}+(y-20)^{2}=7^{2} .

Then I created a parametric pair based on the equation being a circle, let x = 15 + 7 c o s ( t ) \large x=15+7cos(t) and y = 20 + 7 s i n ( t ) \large y=20+7sin(t)

Next let f : = y x = 20 + 7 s i n ( t ) 15 + 7 c o s ( t ) \large f := \frac{y}{x} = \frac {20+7sin(t)}{15+7cos(t)} and derive for critical points, when f'(t)=0.

f = 7 ( 20 s i n ( t ) + 15 c o s ( t ) + 7 ) ( 15 + 7 c o s ( t ) ) 2 = 0 20 s i n ( t ) + 15 c o s ( t ) + 7 = 0 \large f'= \frac{7 (20 sin(t) + 15 cos(t) + 7)}{(15 + 7 cos(t))^2}=0 \Rightarrow 20sin(t)+15cos(t)+7=0

Then allow a = t a n ( t 2 ) \large a=tan(\frac{t}{2}) so that s i n ( t ) = 2 a a 2 + 1 \large sin(t)=\frac{2a}{a^{2}+1} and c o s ( t ) = 1 a 2 a 2 + 1 \large cos(t)=\frac{1-a^{2}}{a^{2}+1}

20 s i n ( t ) + 15 c o s ( t ) + 7 = 0 20 2 a a 2 + 1 + 15 1 a 2 a 2 + 1 + 7 = 0 a = 1 2 a = 11 2 \large 20sin(t)+15cos(t)+7=0 \Rightarrow 20\frac{2a}{a^{2}+1}+15\frac{1-a^{2}}{a^{2}+1}+7=0 \Rightarrow \quad a=\frac{-1}{2}\lor\large a=\frac{11}{2}

These a \large a values also mean the pairs for ( c o s ( t ) , s i n ( t ) ) \large (cos(t),sin(t)) are ( 3 5 , 4 5 ) ( 117 125 , 44 125 ) \large (\frac{3}{5},\frac{-4}{5})\land\large (\frac{-117}{125},\frac{44}{125})

Moving forward this means our pairs for ( x , y ) \large (x,y) are ( 96 5 , 72 5 ) ( 1056 125 , 2808 125 ) \large (\frac{96}{5},\frac{72}{5})\land\large (\frac{1056}{125},\frac{2808}{125})

Which brings us to our two f = y x \large f=\frac{y}{x} values of 72 96 = 3 4 2808 1056 = 117 44 \large \frac{72}{96}=\frac{3}{4}\land\large \frac{2808}{1056}=\frac{117}{44} .

The larger of which being the maximum y x \frac{y}{x} is 117 44 \large \frac{117}{44} thus the required answer is 117 + 44 = 161 \large 117+44=161

I loved every minute of this problem! bringing me way back to middle school and learning about conic sections! Thank you for the awesome problem.

geometric solution:

Since we want to maximize y x \large \quad\frac{y}{x}\quad , the line y = k x \large\quad y=kx\quad will be tangent to the circle

We can write a location for x and y, using the similar triangles in green

Thus we get the equation 15 7 s i n θ = 24 c o s θ \large\quad 15-7sin\theta=24cos\theta\quad and 20 + 7 c o s θ = 24 s i n θ \large\quad 20+7cos\theta=24sin\theta

Let 24 c o s θ = x c o s θ = x 24 \large\quad 24 cos\theta = x \iff cos\theta=\frac{x}{24}\quad and likewise 24 s i n θ = y s i n θ = y 24 \large\quad 24sin\theta=y \iff sin\theta=\frac{y}{24}

Now we can solve for x and y (from above):

5 7 s i n θ = 24 c o s θ 20 + 7 c o s θ = 24 s i n θ 15 7 y 24 = x 20 + 7 x 24 = y 15 7 ( 20 + 7 x 24 ) 24 = x and 20 + 7 ( 15 7 y 24 ) 24 = y 15 2 4 2 7 20 24 2 4 2 + 7 2 = x 20 2 4 2 + 7 15 24 2 4 2 + 7 2 = y \begin{array}{lll} 5-7sin\theta=24cos\theta &\qquad& 20+7cos\theta=24sin\theta \\ \large \Rightarrow 15-\frac{7y}{24}=x &\qquad& \Rightarrow 20+\frac{7x}{24}=y \\ \Rightarrow 15-\frac{7(20+\frac{7x}{24})}{24}=x & \qquad \textbf{and}\qquad &\Rightarrow 20+\frac{7(15-\frac{7y}{24})}{24}=y \\\Rightarrow \frac{15\cdot 24^2-7\cdot 20\cdot 24}{24^2+7^2}=x &\qquad&\Rightarrow \frac{20\cdot 24^2 +7\cdot 15\cdot 24}{24^2+7^2}=y \end{array}

The answer requires

y x = 20 2 4 2 + 7 15 24 15 2 4 2 7 20 24 = 4 24 + 7 3 3 24 7 4 = 96 + 21 72 28 = 117 44 \large \frac{y}{x}=\frac{20\cdot 24^2 + 7\cdot 15\cdot 24}{15\cdot 24^2 -7\cdot 20\cdot 24}=\frac{4\cdot 24+ 7\cdot 3}{3\cdot 24 -7\cdot 4}=\frac{96+21}{72-28}=\frac{117}{44}

Thanks for sharing your solution.

Another thought for a solution is y x \frac{y}{x} can be seen as an equation of a straight line so say y = k x y=kx . Thus we are require to maximize the slope(k) of the line that passes through the origin and and intersects the circle ( x 15 ) 2 + ( y 20 ) 2 = 7 2 (x-15)^2+(y-20)^2=7^2 .

Sathvik Acharya - 3 years, 5 months ago

Log in to reply

I see! let me see about this way.

done!

Jerry McKenzie - 3 years, 4 months ago
James Wilson
Jan 24, 2018

I'm just going to explain the method I used. Solve for y y . Then divide the result by x x , to obtain an expression for y x \frac{y}{x} that's only in terms of x x . Then set its derivative to zero. This results in a quadratic equation with two rational roots. Then substitute each root into the expression. One of them will produce the maximum.

0 pending reports

×

Problem Loading...

Note Loading...

Set Loading...