Volcanic Sangaku

Geometry Level 5

In the equilateral triangle A B C \bigtriangleup ABC , points D D and E E are selected, such that:

  • D E \overline{DE} and D C \overline{DC} form three identical cyan incircles;
  • And that two segments are extended indefinitely from C C to form an orange circle tangent to D B \overline{DB} .

If the ratio of the radius of the orange circle to the radius of one cyan circle can be expressed as A B C D \sqrt[C]{A^B} - D , where A , B , C , D A,B,C,D are positive integers, B , C B,C coprime and A A square free, input the product A B C D ABCD as your answer.

Inspiration


The answer is 24.

This section requires Javascript.
You are seeing this because something didn't load right. We suggest you, (a) try refreshing the page, (b) enabling javascript if it is disabled on your browser and, finally, (c) loading the non-javascript version of this page . We're sorry about the hassle.

1 solution

David Vreken
Jan 15, 2021

Let the sides of the equilateral triangle be 1 1 , and let p = B D p = BD , q = C E q = CE , t = D E t = DE , and u = C D u = CD .

The area of B C D \triangle BCD is T B C D = 1 2 p 1 sin 60 ° = 3 4 p T_{\triangle BCD} = \frac{1}{2} \cdot p \cdot 1 \cdot \sin 60° = \frac{\sqrt{3}}{4}p , and the semiperimeter of B C D \triangle BCD is s B C D = 1 2 ( p + u + 1 ) s_{\triangle BCD} = \frac{1}{2}(p + u + 1) .

The area of A D E \triangle ADE is T A D E = 1 2 ( 1 p ) ( 1 q ) sin 60 ° = 3 4 ( 1 p ) ( 1 q ) T_{\triangle ADE} = \frac{1}{2} \cdot (1 - p) \cdot (1 - q) \cdot \sin 60° = \frac{\sqrt{3}}{4}(1 - p)(1 - q) , and the semiperimeter of A D E \triangle ADE is s A D E = 1 2 ( 2 p q + t ) s_{\triangle ADE} = \frac{1}{2}(2 - p - q + t) .

The area of E D C \triangle EDC is T E D C = T A B C T B C D T A D E = 3 4 3 4 p 3 4 ( 1 p ) ( 1 q ) = 3 4 ( 1 p ) q T_{\triangle EDC} = T_{\triangle ABC} - T_{\triangle BCD} - T_{\triangle ADE} = \frac{\sqrt{3}}{4} - \frac{\sqrt{3}}{4}p - \frac{\sqrt{3}}{4}(1 - p)(1 - q) = \frac{\sqrt{3}}{4}(1 - p)q , and the semiperimeter of E D C \triangle EDC is s E D C = 1 2 ( t + u + q ) s_{\triangle EDC} = \frac{1}{2}(t + u + q) .

Since the inradius is r = T s r = \frac{T}{s} and each incircle is equal,

r = 3 4 p 1 2 ( p + s + 1 ) = 3 4 ( 1 p ) ( 1 q ) 1 2 ( 2 p q + t ) = 3 4 ( 1 p ) q 1 2 ( t + u + q ) r = \cfrac{\frac{\sqrt{3}}{4}p}{\frac{1}{2}(p + s + 1)} = \cfrac{\frac{\sqrt{3}}{4}(1 - p)(1 - q)}{\frac{1}{2}(2 - p - q + t)} = \cfrac{\frac{\sqrt{3}}{4}(1 - p)q}{\frac{1}{2}(t + u + q)}

By the law of cosines on B C D \triangle BCD , u = p 2 + 1 2 2 p 1 cos 60 ° u = \sqrt{p^2 + 1^2 - 2 \cdot p \cdot 1 \cos 60°} , or

u = p 2 p 1 u = \sqrt{p^2 - p - 1}

and by the law of cosines on A D E \triangle ADE , t = ( 1 p ) 2 + ( 1 q ) 2 2 ( 1 p ) ( 1 q ) cos 60 ° t = \sqrt{(1 - p)^2 + (1 - q)^2 - 2 \cdot (1 - p) \cdot (1 - q) \cos 60°} , or

t = p 2 + q 2 p q p q + 1 t = \sqrt{p^2 + q^2 - pq - p - q + 1}

Substituting u u and t t into the inradius equations 3 4 p 1 2 ( p + u + 1 ) = 3 4 ( 1 p ) ( 1 q ) 1 2 ( 2 p q + t ) \cfrac{\frac{\sqrt{3}}{4}p}{\frac{1}{2}(p + u + 1)} = \cfrac{\frac{\sqrt{3}}{4}(1 - p)(1 - q)}{\frac{1}{2}(2 - p - q + t)} and solving for q q gives:

q = 4 p 3 + 4 p 2 + p 1 + ( 4 p 2 2 p ) p 2 p + 1 7 p 2 2 p 1 q = \cfrac{-4p^3+4p^2+p-1+(4p^2-2p)\sqrt{p^2-p+1}}{7p^2-2p-1}

and substituting u u and t t into the inradius equations 3 4 p 1 2 ( p + u + 1 ) = 3 4 ( 1 p ) q 1 2 ( t + u + q ) \cfrac{\frac{\sqrt{3}}{4}p}{\frac{1}{2}(p + u + 1)} = \cfrac{\frac{\sqrt{3}}{4}(1 - p)q}{\frac{1}{2}(t + u + q)} and solving for q q gives:

q = 8 p 4 21 p 3 + 16 p 2 11 p + 4 + ( 8 p 3 4 p 2 + 12 p 4 ) p 2 p + 1 3 ( 7 p 3 9 p 2 + p + 1 ) q = \cfrac{8p^4-21p^3+16p^2-11p+4+(-8p^3-4p^2+12p-4)\sqrt{p^2-p+1}}{3(7p^3-9p^2+p+1)}

Therefore, q = 4 p 3 + 4 p 2 + p 1 + ( 4 p 2 2 p ) p 2 p + 1 7 p 2 2 p 1 = 8 p 4 21 p 3 + 16 p 2 11 p + 4 + ( 8 p 3 4 p 2 + 12 p 4 ) p 2 p + 1 3 ( 7 p 3 9 p 2 + p + 1 ) q = \cfrac{-4p^3+4p^2+p-1+(4p^2-2p)\sqrt{p^2-p+1}}{7p^2-2p-1} = \cfrac{8p^4-21p^3+16p^2-11p+4+(-8p^3-4p^2+12p-4)\sqrt{p^2-p+1}}{3(7p^3-9p^2+p+1)} , which solves to p = 1 5 ( 1 + 2 2 3 4 3 ) p = \frac{1}{5}(1 + 2\sqrt[3]{2} - \sqrt[3]{4}) or p = 5 8 p = \frac{5}{8} for 0 < p < 1 0 < p < 1 . However, p = 5 8 p = \frac{5}{8} leads to q = 1 q = 1 , so it must be that p = 1 5 ( 1 + 2 2 3 4 3 ) p = \frac{1}{5}(1 + 2\sqrt[3]{2} - \sqrt[3]{4}) .

If p = 1 5 ( 1 + 2 2 3 4 3 ) p = \frac{1}{5}(1 + 2\sqrt[3]{2} - \sqrt[3]{4}) , then u = p 2 p 1 = 1 5 ( 1 + 3 2 3 + 4 3 ) u = \sqrt{p^2 - p - 1} = \frac{1}{5}(-1 + 3\sqrt[3]{2} + \sqrt[3]{4}) .

The orange circle is an excircle to B C D \triangle BCD , so the ratio of the radii of the orange and cyan circles is s B C D s B C D p = 1 2 ( p + u + 1 ) 1 2 ( p + u + 1 ) p = 2 4 3 1 \cfrac{s_{\triangle BCD}}{s_{\triangle BCD} - p} = \cfrac{\frac{1}{2}(p + u + 1)}{\frac{1}{2}(p + u + 1) - p} = \sqrt[3]{2^4} - 1

Therefore, A = 2 A = 2 , B = 4 B = 4 , C = 3 C = 3 , D = 1 D = 1 , and A B C D = 24 ABCD = \boxed{24} .

0 pending reports

×

Problem Loading...

Note Loading...

Set Loading...