Voltage-Controlled Voltage Source

An A C AC voltage source V S V_S has internal impedance Z S Z_S . The terminal voltage of this source is V T V_T . Another voltage source is connected in series, and supplies a voltage α V T \alpha V_T , where α \alpha is a complex constant. Load impedance Z L Z_L completes the circuit.

What is the magnitude of the load voltage V L V_L ?

Details and Assumptions:
1) V S = 10 + j 0 volts V_S = 10 + j 0 \, \text{volts}
2) Z S = 0 + j 3 Ω Z_S = 0 + j 3\, \Omega
3) Z L = 5 + j 0 Ω Z_L = 5 + j 0\, \Omega
4) α = 0.2 + j 0.3 \alpha = 0.2 + j 0.3
5) j = 1 j = \sqrt{-1}


The answer is 11.335.

This section requires Javascript.
You are seeing this because something didn't load right. We suggest you, (a) try refreshing the page, (b) enabling javascript if it is disabled on your browser and, finally, (c) loading the non-javascript version of this page . We're sorry about the hassle.

2 solutions

Steven Chase
Apr 29, 2021

There are several ways to present the solution. My preference is to invoke continuity of current in the circuit (since everything is in series).

V S V T Z S = V T + α V T Z L \frac{V_S - V_T}{Z_S} = \frac{V_T + \alpha V_T}{Z_L}

Solve that equation for V T V_T , and then V L = V T + α V T V_L = V_T + \alpha V_T

Nice method

Talulah Riley - 1 month, 1 week ago

@Steven Chase How are you ? Are you fine ?
Please provide me a anayltical solution whenever you are free.
.
Thanks in advance


Talulah Riley - 1 month, 1 week ago
Karan Chatrath
Apr 29, 2021

The negative terminal of the source S S is considered to be at 0 V 0 \ \mathrm{V} . Keeping this in mind, the circuit equations are:

V S + I Z S α V T + I Z L = 0 -V_S + IZ_S - \alpha V_T + IZ_L=0 V S V T = I Z S V_S - V_T=IZ_S I Z L = V L IZ_L = V_L

Writing these equations in a matrix form leads to:

[ Z S + Z L α Z S 1 ] [ I V T ] = [ V S V S ] \left[ \begin{matrix} Z_S+Z_L&-\alpha\\Z_S&1\end{matrix} \right]\left[ \begin{matrix} I\\V_T \end{matrix} \right]=\left[ \begin{matrix} V_S\\V_S \end{matrix} \right] V L = [ Z L 0 ] [ I V T ] = [ Z L 0 ] [ Z S + Z L α Z S 1 ] 1 [ V S V S ] \implies V_L = \left[ \begin{matrix} Z_L & 0 \end{matrix} \right]\left[ \begin{matrix} I\\V_T \end{matrix} \right] = \left[ \begin{matrix} Z_L & 0 \end{matrix} \right] \left[ \begin{matrix} Z_S+Z_L&-\alpha\\Z_S&1\end{matrix} \right]^{-1} \left[ \begin{matrix} V_S\\V_S \end{matrix} \right]

Finally:

V L = [ Z L 0 ] [ Z S + Z L α Z S 1 ] 1 [ V S V S ] 11.335 \lvert V_L \rvert = \Biggr\lvert \left[ \begin{matrix} Z_L & 0 \end{matrix} \right] \left[ \begin{matrix} Z_S+Z_L&-\alpha\\Z_S&1\end{matrix} \right]^{-1} \left[ \begin{matrix} V_S\\V_S \end{matrix} \right] \Biggr\rvert \approx 11.335

@Karan Chatrath how are you ?
please give me a anayltical solution of this below problem.whenever you are free.Thanks in advance

Talulah Riley - 1 month, 1 week ago

0 pending reports

×

Problem Loading...

Note Loading...

Set Loading...