Calculate the volume of the solid defined by the inequalities below:
This section requires Javascript.
You are seeing this because something didn't load right. We suggest you, (a) try
refreshing the page, (b) enabling javascript if it is disabled on your browser and,
finally, (c)
loading the
non-javascript version of this page
. We're sorry about the hassle.
Volume [ ImplicitRegion [ z ≥ 3 x 2 + 2 y 2 ∧ 3 x 2 + 2 y 2 + 5 z 2 ≤ 1 ∧ − 0 . 3 5 ≤ x ≤ 0 . 3 5 ∧ − 0 . 4 3 ≤ y ≤ 0 . 4 3 ∧ 0 . ≤ z ≤ 0 . 4 5 , { x , y , z } ] , Method → Integrate ] ⟹ 0 . 1 0 3 4 9 5 9 1 9 7 4 5 .
This is a ellipsoid cap over an elliptic paraboloid cup. By scaling the x and y coordinates to make the horizontal cross section circular, the integrations become much simpler. The volume can be unscaled back to the original dimensions afterwards linearly.
The cap: ∫ 1 0 1 ( 2 1 − 1 ) 5 1 ( 1 − 5 z 2 ) d z ⟹ − 5 ( 1 5 5 1 − 3 0 0 0 ( 2 1 − 1 ) 3 ) + 1 0 1 ( 1 − 2 1 ) + 5 1 .
The cup: ∫ 0 1 0 1 ( 2 1 − 1 ) q d q ⟹ 2 0 0 1 ( 2 1 − 1 ) 2 .
Adding the cap and cup, multiplying by for the "circular" cross section and unscaling; 2 3 π ( 2 0 0 1 ( 2 1 − 1 ) 2 − 5 ( 1 5 5 1 − 3 0 0 0 ( 2 1 − 1 ) 3 ) + 1 0 1 ( 1 − 2 1 ) + 5 1 ) ⟹ 3 0 0 6 ( 4 0 5 − 2 1 2 1 + 3 1 ) π ⟹ 0 . 1 0 3 4 9 5 9 1 2 2 0 4