Volume Festival.

Calculus Level 3

Let ( x < 1 ) (|x| < 1) and f ( x ) = n = 0 ( ( 2 n + 1 2 ) ! ( 2 n 3 2 ) ! ( a + n d ) x n ) f(x) = \displaystyle\sum_{n = 0}^{\infty} \left(\left(\frac{2n + 1}{2}\right)! \left(\frac{-2n - 3}{2}\right)! * (a + nd)x^n\right) and g ( x ) = n = 0 ( a + n 2 d ) x n g(x) = \displaystyle\sum_{n = 0}^{\infty} (a^{*} + n^2 d^{*})x^n .

If f ( 1 2 ) = g ( 1 2 ) = 2 f(\dfrac{1}{2}) = g(\dfrac{1}{2}) = 2 and f ( 1 2 ) = g ( 1 2 ) = 2 9 f(-\dfrac{1}{2}) = g(-\dfrac{1}{2}) = \dfrac{2}{9} and the volume V V of the region bounded by f ( x ) f(x) and g ( x ) g(x) on [ 1 2 , 1 2 ] [-\dfrac{1}{2},\dfrac{1}{2}] when revolved about the x x axis can be expressed as V = α β π V = \dfrac{\alpha}{\beta}\pi , where gcf ( α , β ) = 1 \text{gcf}(\alpha,\beta) = 1 , find α + β \alpha + \beta .


The answer is 841517.

This section requires Javascript.
You are seeing this because something didn't load right. We suggest you, (a) try refreshing the page, (b) enabling javascript if it is disabled on your browser and, finally, (c) loading the non-javascript version of this page . We're sorry about the hassle.

1 solution

Rocco Dalto
Aug 30, 2018

Using the gamma function Γ ( p ) = 0 t p 1 e t d t \Gamma(p) = \int_{0}^{\infty} t^{p - 1} e^{-t} dt we obtain:

Γ ( 1 2 ) = 0 t 1 2 e t d t \Gamma(\dfrac{1}{2}) = \displaystyle\int_{0}^{\infty} t^{-\frac{1}{2}} e^{-t} dt

Let s 2 = t 2 s d s = d t s^2 = t \implies 2s ds = dt \implies

Γ ( 1 2 ) = 2 0 e s 2 d s \Gamma(\dfrac{1}{2}) = 2\displaystyle\int_{0}^{\infty} e^{-s^2} ds

Since s is a dummy variable we can write:

( Γ ( 1 2 ) ) 2 = (\Gamma(\dfrac{1}{2}))^2 = 4 0 e x 2 d x 0 e y 2 d y = 4\displaystyle\int_{0}^{\infty} e^{-x^2} dx \int_{0}^{\infty} e^{-y^2} dy = 4 0 0 e ( x 2 + y 2 ) d x d y 4\displaystyle\int_{0}^{\infty} \int_{0}^{\infty} e^{-(x^2 + y^2)} dx dy

Let x = r cos θ , y = r sin θ x = r\cos\theta, y = r\sin\theta

Using the Jacobian ( Γ ( 1 2 ) ) 2 = 4 0 π 2 0 e r 2 r d r d θ = \implies (\Gamma(\dfrac{1}{2}))^2 = 4\displaystyle\int_{0}^{\frac{\pi}{2}} \int_{0}^{\infty} e^{-r^2} r dr d\theta = 2 0 π 2 e r 2 0 d θ = 2 0 π 2 d θ = π Γ ( 1 2 ) = π -2\displaystyle\int_{0}^{\frac{\pi}{2}} e^{-r^2}|_{0}^{\infty} d\theta = 2\displaystyle\int_{0}^{\frac{\pi}{2}} d\theta = \pi \implies \Gamma(\dfrac{1}{2}) = \sqrt{\pi}

Now, using integration by parts you can show that Γ ( p + 1 ) = p Γ ( p ) \Gamma(p + 1) = p \Gamma(p)

Show Γ ( 1 ) = 1 \Gamma(1) = 1 and recursively using Γ ( p + 1 ) = p Γ ( p ) Γ ( p + 1 ) = p ! \Gamma(p + 1) = p \Gamma(p) \implies \Gamma(p + 1) = p! for any integer p 0 p \geq 0 and p can be extended to reals so that Γ ( 1 2 ) = Γ ( 1 2 + 1 ) = π = ( 1 2 ) ! \Gamma(\dfrac{1}{2}) = \Gamma(\dfrac{-1}{2} + 1) = \sqrt{\pi} = (\dfrac{-1}{2})!

Using Γ ( p + 1 ) = p Γ ( p ) \Gamma(p + 1) = p \Gamma(p) and Γ ( 1 2 ) = π = ( 1 2 ) ! \Gamma(\dfrac{1}{2}) = \sqrt{\pi} = (\dfrac{-1}{2})!

\implies

S 0 = Γ ( 3 2 ) = 1 2 Γ ( 1 2 ) = π 2 = ( 1 2 ) ! S_{0} = \Gamma(\dfrac{3}{2}) = \dfrac{1}{2} * \Gamma(\dfrac{1}{2}) = \dfrac{\sqrt{\pi}}{2} = (\dfrac{1}{2})!

S 1 = Γ ( 5 2 ) = 3 2 Γ ( 3 2 ) = 1 3 π 2 2 = ( 3 2 ) ! S_{1} = \Gamma(\dfrac{5}{2}) = \dfrac{3}{2} * \Gamma(\dfrac{3}{2}) = \dfrac{1 * 3 * \sqrt{\pi}}{2^2} = (\dfrac{3}{2})!

S 2 = Γ ( 7 2 ) = 5 2 Γ ( 5 2 ) = 1 3 5 π 2 3 = ( 5 2 ) ! S_{2} = \Gamma(\dfrac{7}{2}) = \dfrac{5}{2} * \Gamma(\dfrac{5}{2}) = \dfrac{1 * 3 * 5 * \sqrt{\pi}}{2^3} = (\dfrac{5}{2})!

In General:

S n = Γ ( 2 n + 3 2 ) = 1 3 5 ( 2 n + 1 ) π 2 n + 1 = ( n + 1 2 ) ! S_{n} = \Gamma(\dfrac{2n + 3}{2}) = \dfrac{1 * 3 * 5 * * * (2n + 1) * \sqrt{\pi}}{2^{n + 1}} = (n + \frac{1}{2})!

( n + 1 2 ) ! = ( 2 n + 1 ) ! π 2 2 n + 1 n ! \implies (n + \dfrac{1}{2})! = \dfrac{(2n + 1)! * \sqrt{\pi}}{2^{2n + 1} * n!} , where n n is a non-negative integer.

Note: ( 2 n + 1 ) ! = 1 2 3 ( 2 n ) ( 2 n + 1 ) = 2 n n ! ( 1 3 5 ( 2 n + 1 ) ) (2n + 1)! = 1 * 2 * 3 * * * (2n) * (2n + 1) = 2^n * n! * (1 * 3 * 5 * * * (2n + 1)) \implies 1 3 5 ( 2 n + 1 ) = ( 2 n + 1 ) ! 2 n n ! 1 * 3 * 5 * * * (2n + 1) = \dfrac{(2n + 1)!}{2^n * n!}

and,

Using Γ ( p ) = Γ ( p + 1 ) p \Gamma(p) = \dfrac{\Gamma(p + 1)}{p} and Γ ( 1 2 ) = π = ( 1 2 ) ! \Gamma(\dfrac{1}{2}) = \sqrt{\pi} = (\dfrac{-1}{2})!

\implies

T 0 = Γ ( 1 2 ) = 2 Γ ( 1 2 ) = 2 π = ( 3 2 ) ! T_{0} = \Gamma(-\dfrac{1}{2}) = -2\Gamma(\dfrac{1}{2}) = -2\sqrt{\pi} = (-\dfrac{3}{2})!

T 1 = Γ ( 3 2 ) = 2 3 Γ ( 1 2 ) = 2 2 1 3 π = ( 5 2 ) ! T_{1} = \Gamma(-\dfrac{3}{2}) = -\dfrac{2}{3}\Gamma(-\dfrac{1}{2}) = \dfrac{2^2}{1 * 3}\sqrt{\pi} = (-\dfrac{5}{2})!

T 2 = Γ ( 5 2 ) = 2 5 Γ ( 3 2 ) = 2 3 1 3 5 π = ( 7 2 ) ! T_{2} = \Gamma(-\dfrac{5}{2}) = -\dfrac{2}{5}\Gamma(-\dfrac{3}{2}) = -\dfrac{2^3}{1 * 3 * 5}\sqrt{\pi} = (-\dfrac{7}{2})!

In General:

T n = Γ ( n 1 2 ) = ± 2 n + 1 π 1 3 5 ( 2 n + 1 ) = ( n 3 2 ) ! T_{n} = \Gamma(-n -\dfrac{1}{2}) = \pm\dfrac{2^{n + 1}\sqrt{\pi}}{1 * 3 * 5 * * * (2n + 1)} = (-n -\dfrac{3}{2})!

( n 3 2 ) ! = ± 2 2 n + 1 n ! π ( 2 n + 1 ) ! \implies (-n - \dfrac{3}{2})! = \pm\dfrac{2^{2n + 1} * n!\sqrt{\pi}}{(2n + 1)!} , where n n is a non-negative integer

\implies

S n T n = S_{n} * T_{n} = { π for n odd π for n even \begin{cases} \pi & \text{for} \:\ n \:\ \text{odd}\\ -\pi & \text{for} \:\ n \:\ \text{even}\\ \end{cases} .

Let x < 1 |x| < 1 .

n = 0 ( a + n d ) x n = a n = 0 x n + d n = 1 n x n = \displaystyle\sum_{n = 0}^{\infty} (a + nd)x^n = a\displaystyle\sum_{n = 0}^{\infty} x^n + d\displaystyle\sum_{n = 1}^{\infty} nx^n = a 1 x + d j = 1 n = j x n = \dfrac{a}{1 - x} + d\displaystyle\sum_{j = 1}^{\infty}\sum_{n = j}^{\infty} x^n = a 1 x + d 1 x j = 1 x j = a 1 x + d 1 x ( x 1 x ) = a 1 x + d x ( 1 x ) 2 \dfrac{a}{1 - x} + \dfrac{d}{1 - x}\displaystyle\sum_{j = 1}^{\infty} x^{j} = \dfrac{a}{1 - x} + \dfrac{d}{1 - x}(\dfrac{x}{1 - x}) = \dfrac{a}{1 - x} + \dfrac{dx}{(1 - x)^2}

\implies

f ( x ) = n = 0 ( ( 2 n + 1 2 ) ! ( 2 n 3 2 ) ! ( a + n d ) x n ) = π n = 0 ( 1 ) n ( a + n d ) x n = π ( a 1 + x d x ( 1 + x ) 2 ) f(x) = \displaystyle\sum_{n = 0}^{\infty} \left(\left(\frac{2n + 1}{2}\right)! \left(\frac{-2n - 3}{2}\right)! * (a + nd)x^n\right) = -\pi\displaystyle\sum_{n = 0}^{\infty} (-1)^n (a + nd)x^n = \boxed{-\pi(\dfrac{a}{1 + x} - \dfrac{dx}{(1 + x)^2})}

and,

g ( x ) = n = 0 ( a + n 2 d ) x n = a n = 0 x n + d n = 1 n 2 x n = a 1 x + d j = 1 n = j n x n = g(x) =\displaystyle\sum_{n = 0}^{\infty} (a^{*} + n^2 d^{*})x^n = a^{*}\displaystyle\sum_{n = 0}^{\infty} x^n + d^{*}\displaystyle\sum_{n = 1}^{\infty} n^2 x^n = \dfrac{a^{*}}{1 - x} + d^{*}\displaystyle\sum_{j = 1}^{\infty}\displaystyle\sum_{n = j}^{\infty} n x^n = ( a 1 x + d j = 1 ( j x j + ( j + 1 ) x j + 1 + ( j + 2 ) x j + 2 + . . . ) = (\dfrac{a^{*}}{1 - x} + d^{*}\displaystyle\sum_{j = 1}^{\infty} (j x^{j} + (j + 1)x^{j + 1} + (j + 2)x^{j + 2} + ... ) = a 1 x + d ( 1 1 x j = 1 j x j + x ( 1 x ) 2 j = 1 x j ) = \dfrac{a^{*}}{1 - x} + d^{*}(\dfrac{1}{1 - x}\displaystyle\sum_{j = 1}^{\infty} j x^{j} + \dfrac{x}{(1 - x)^2}\displaystyle\sum_{j = 1}^{\infty} x^{j}) = a 1 x + d ( ( 1 1 x ) ( x ( 1 x ) 2 ) + ( x ( 1 x ) 2 ) ( x 1 x ) ) = a 1 x + d ( x 2 + x ( 1 x ) 3 ) \dfrac{a^{*}}{1 - x} + d^{*}((\dfrac{1}{1 - x})(\dfrac{x}{(1 - x)^2}) + (\dfrac{x}{(1 - x)^2})(\dfrac{x}{1 - x})) = \boxed{\dfrac{a^{*}}{1 - x} + d^{*}(\dfrac{x^2 + x}{(1 - x)^3})}

f ( 1 2 ) = 2 f(\dfrac{1}{2}) = 2 and f ( 1 2 ) = 2 9 f(-\dfrac{1}{2}) = \dfrac{2}{9} \implies

3 a d = 9 π 3a - d = \dfrac{-9}{\pi}

a + d = 1 9 π a + d = \dfrac{-1}{9\pi}

a = 41 18 π \implies a = \dfrac{-41}{18\pi} and d = 13 6 π d = \dfrac{13}{6\pi} f ( x ) = 1 6 ( 41 3 ( 1 + x ) + 13 x ( 1 + x ) 2 ) = 1 18 ( 80 x + 41 ( 1 + x ) 2 ) \implies f(x) = \dfrac{1}{6}(\dfrac{41}{3(1 + x)} + \dfrac{13x}{(1 + x)^2}) = \dfrac{1}{18}(\dfrac{80x + 41}{(1 + x)^2})

Let u = 1 + x d x = d u 1 2 1 2 ( f ( x ) ) 2 d x = u = 1 + x \implies dx = du \implies \displaystyle\int_{-\frac{1}{2}}^{\frac{1}{2}} (f(x))^2 dx = 1 1 8 2 1 2 3 2 ( 80 u 39 ) 2 u 4 d u = \dfrac{1}{18^2}\displaystyle\int_{\frac{1}{2}}^{\frac{3}{2}} \dfrac{(80u - 39)^2}{u^4} du = 1 1 8 2 1 2 3 2 6400 u 2 6240 u 3 + 1521 u 4 d u = \dfrac{1}{18^2}\displaystyle\int_{\frac{1}{2}}^{\frac{3}{2}} 6400u^{-2} - 6240u^{-3} + 1521u^{-4} du = 1 1 8 2 ( 6400 u + 3120 u 2 507 u 3 ) 1 2 3 2 = 3028 729 \dfrac{1}{18^2}(-\dfrac{6400}{u} + \dfrac{3120}{u^2} - \dfrac{507}{u^3})|_{\frac{1}{2}}^{\frac{3}{2}} = \boxed{\dfrac{3028}{729}} .

g ( 1 2 ) = 2 g(\dfrac{1}{2}) = 2 and g ( 1 2 ) = 2 9 g(-\dfrac{1}{2}) = \dfrac{2}{9} \implies

9 a d = 3 9a^{*} - d^{*} = 3

a + 3 d = 1 a^{*} + 3d^{*} = 1

a = 5 14 \implies a^{*} = \dfrac{5}{14} and d = 3 14 d^{*} = \dfrac{3}{14} g ( x ) = 1 14 ( 5 1 x + 3 ( x 2 + x ) ( 1 x ) 3 ) \implies g(x) = \dfrac{1}{14}(\dfrac{5}{1 - x} + \dfrac{3(x^2 + x)}{(1 - x)^3})

1 2 1 2 ( g ( x ) ) 2 d x = 1 1 4 2 1 2 1 2 25 ( 1 x ) 2 + 30 x ( x + 1 ) ( 1 x ) 4 + 9 x 2 ( x + 1 ) 2 ( 1 x ) 6 d x \displaystyle\int_{-\frac{1}{2}}^{\frac{1}{2}} (g(x))^2 dx = \dfrac{1}{14^2}\displaystyle\int_{-\frac{1}{2}}^{\frac{1}{2}} \dfrac{25}{(1 - x)^2} + \dfrac{30x(x + 1)}{(1 - x)^4} + \dfrac{9x^2(x + 1)^2}{(1 - x)^6} dx

Let I 1 ( x ) = x ( x + 1 ) ( 1 x ) 4 d x I_{1}(x) = \displaystyle\int \dfrac{x(x + 1)}{(1 - x)^4} dx

Letting u = 1 x d x d u I 1 ( x ) = u 2 3 u 3 + 2 u 4 d u = 1 1 x 3 2 ( 1 x ) 2 + 2 3 ( 1 x ) 3 u = 1 - x \implies dx - -du \implies I_{1}(x) = -\displaystyle\int u^{-2} - 3u^{-3} + 2u^{-4} du = \dfrac{1}{1 - x} - \dfrac{3}{2(1 - x)^2} + \dfrac{2}{3(1 - x)^3}

I 1 ( x ) 1 2 1 2 = 92 81 \implies I_{1}(x)|_{-\frac{1}{2}}^{\frac{1}{2}} = \boxed{\dfrac{92}{81}}

Let I 2 ( x ) = x 2 ( x + 1 ) 2 ( 1 x ) 6 d x I_{2}(x) = \displaystyle\int \dfrac{x^2(x + 1)^2}{(1 - x)^6} dx

Letting u = 1 x d x d u I 2 = u 2 6 u 3 + 13 u 4 12 u 5 + 4 u 6 d u = u = 1 - x \implies dx - -du \implies I_{2} = -\displaystyle\int u^{-2} - 6u^{-3} + 13u^{-4} - 12u^{-5} + 4u^{-6} du = 1 1 x 3 ( 1 x ) 2 + 13 3 ( 1 x ) 3 3 ( 1 x ) 4 + 4 5 ( 1 x ) 5 \dfrac{1}{1 - x} - \dfrac{3}{(1 - x)^2} + \dfrac{13}{3(1 - x)^3} - \dfrac{3}{(1 - x)^4} + \dfrac{4}{5(1 - x)^5}

I 2 ( x ) 1 2 1 2 = 2596 1215 \implies I_{2}(x)|_{-\frac{1}{2}}^{\frac{1}{2}} = \boxed{\dfrac{2596}{1215}}

and,

I 3 = 1 2 1 2 ( 1 x ) 2 d x = 1 1 x 1 2 1 2 = 4 3 I_{3} = \displaystyle\int_{-\frac{1}{2}}^{\frac{1}{2}} (1 - x)^{-2} dx = \dfrac{1}{1 - x}|_{-\frac{1}{2}}^{\frac{1}{2}} = \boxed{\dfrac{4}{3}}

1 2 1 2 ( g ( x ) ) 2 = 1 1 4 2 ( 100 3 + 2760 81 + 23364 1215 ) = 2924 6615 \implies \displaystyle\int_{-\frac{1}{2}}^{\frac{1}{2}} (g(x))^2 = \dfrac{1}{14^2}(\dfrac{100}{3} + \dfrac{2760}{81} + \dfrac{23364}{1215}) = \boxed{\dfrac{2924}{6615}}

V = π 1 2 1 2 ( f ( x ) ) 2 ( g ( x ) ) 2 d x = 662912 178605 π = α β π α + β = 841517 \implies V = \pi\displaystyle\int_{-\frac{1}{2}}^{\frac{1}{2}} (f(x))^2 - (g(x))^2 dx = \dfrac{662912}{178605}\pi = \dfrac{\alpha}{\beta}\pi \implies \alpha + \beta = \boxed{841517} .

0 pending reports

×

Problem Loading...

Note Loading...

Set Loading...