R 3 ∭ ( x 2 + y 2 + z 2 + 1 ) 2 d V = π k
Given the above, find the value of k .
This section requires Javascript.
You are seeing this because something didn't load right. We suggest you, (a) try
refreshing the page, (b) enabling javascript if it is disabled on your browser and,
finally, (c)
loading the
non-javascript version of this page
. We're sorry about the hassle.
To add to Mark Henning's solution, cylindrical coordinates can also do the trick here. Let 0 ≤ θ ≤ 2 π , 0 ≤ r < ∞ , − ∞ < z < ∞ , and x 2 + y 2 = r 2 which gives us the triple integral:
∫ 0 2 π ∫ − ∞ ∞ ∫ 0 ∞ ( r 2 + z 2 + 1 ) 2 1 r d r d z d θ = π 2 .
Problem Loading...
Note Loading...
Set Loading...
Performing the integral using spherical polar coordinates, and the substitution u = r 2 , ∭ R 3 ( x 2 + y 2 + z 2 + 1 ) 2 1 d x d y d z = ∫ 0 2 π ∫ 0 π ∫ 0 ∞ ( r 2 + 1 ) 2 1 r 2 sin θ d r d θ d ϕ = 4 π ∫ 0 ∞ ( r 2 + 1 ) 2 r 2 d r = 2 π ∫ 0 ∞ ( u + 1 ) 2 u d u = 2 π B ( 2 3 , 2 1 ) = 2 π Γ ( 2 ) Γ ( 2 3 ) Γ ( 2 1 ) = 2 π 1 ! 2 1 π × π = π 2 making the answer 2 .