Classic Calculus Question I

Calculus Level 3

R 3 d V ( x 2 + y 2 + z 2 + 1 ) 2 = π k \large \iiint \limits_{\mathbb R^3} \frac {dV}{(x^2+y^2+z^2+1)^2} = \pi^k

Given the above, find the value of k k .

4 1 2 3

This section requires Javascript.
You are seeing this because something didn't load right. We suggest you, (a) try refreshing the page, (b) enabling javascript if it is disabled on your browser and, finally, (c) loading the non-javascript version of this page . We're sorry about the hassle.

2 solutions

Mark Hennings
Jul 18, 2018

Performing the integral using spherical polar coordinates, and the substitution u = r 2 u = r^2 , R 3 1 ( x 2 + y 2 + z 2 + 1 ) 2 d x d y d z = 0 2 π 0 π 0 1 ( r 2 + 1 ) 2 r 2 sin θ d r d θ d ϕ = 4 π 0 r 2 ( r 2 + 1 ) 2 d r = 2 π 0 u ( u + 1 ) 2 d u = 2 π B ( 3 2 , 1 2 ) = 2 π Γ ( 3 2 ) Γ ( 1 2 ) Γ ( 2 ) = 2 π 1 2 π × π 1 ! = π 2 \begin{aligned} \iiint_{\mathbb{R}^3}\frac{1}{(x^2+y^2+z^2+1)^2}\,dx\,dy\,dz & = \; \int_0^{2\pi} \int_0^\pi \int_0^\infty \frac{1}{(r^2+1)^2}\,r^2\sin\theta\,dr\,d\theta\,d\phi \; = \; 4\pi \int_0^\infty \frac{r^2}{(r^2+1)^2}\,dr \\ & = \; 2\pi \int_0^\infty \frac{\sqrt{u}}{(u+1)^2}\,du \; = \; 2\pi B(\tfrac32,\tfrac12) \; = \; 2\pi \frac{\Gamma(\tfrac32)\Gamma(\tfrac12)}{\Gamma(2)} \; = \; 2\pi \frac{\frac12\sqrt{\pi} \times \sqrt{\pi}}{1!} \\ & = \; \pi^2 \end{aligned} making the answer 2 \boxed{2} .

Tom Engelsman
Aug 1, 2018

To add to Mark Henning's solution, cylindrical coordinates can also do the trick here. Let 0 θ 2 π , 0 r < , < z < 0 \le \theta \le 2\pi, 0 \le r < \infty, -\infty < z < \infty , and x 2 + y 2 = r 2 x^2 + y^2 = r^2 which gives us the triple integral:

0 2 π 0 1 ( r 2 + z 2 + 1 ) 2 r d r d z d θ = π 2 . \int_{0}^{2\pi} \int_{-\infty}^{\infty} \int_{0}^{\infty} \frac{1}{(r^2 + z^2 + 1)^2} r drdzd\theta = \boxed{\pi^2}.

0 pending reports

×

Problem Loading...

Note Loading...

Set Loading...