Volume of Solids of Revolution and Polar Functions Revisited.

Level pending

Find the volume formed when the region inside both r = 1 + cos ( θ ) r = 1 + \cos(\theta) and r = 1 + sin ( θ ) r = 1 + \sin(\theta) is rotated about the x axis.

Express the volume to eight decimal places.


The answer is 6.41316158.

This section requires Javascript.
You are seeing this because something didn't load right. We suggest you, (a) try refreshing the page, (b) enabling javascript if it is disabled on your browser and, finally, (c) loading the non-javascript version of this page . We're sorry about the hassle.

1 solution

Rocco Dalto
Jul 4, 2018

Note: The volume V = 2 π R y d y d x = V = 2\pi\int \int_{R} y dydx = 2 π θ 1 θ 2 0 r ( θ ) r 2 sin ( θ ) d r d θ = 2\pi\int_{\theta_{1}}^{\theta_{2}} \int_{0}^{r(\theta)} r^2\sin(\theta) dr d\theta = 2 π 3 θ 1 θ 2 ( r ( θ ) ) 3 sin ( θ ) d θ \dfrac{2\pi}{3}\int_{\theta_{1}}^{\theta_{2}} (r(\theta))^3 \sin(\theta) d\theta .

r = 1 + cos ( θ ) r = 1 + \cos(\theta) on the branch ( π 4 θ 5 π 4 ) (\dfrac{\pi}{4} \leq \theta \leq \dfrac{5\pi}{4}) and r = 1 + sin ( θ ) r = 1 + \sin(\theta) on the branch ( 5 π 4 θ 9 π 4 ) (\dfrac{5\pi}{4} \leq \theta \leq \dfrac{9\pi}{4})

Let I 1 = 2 π 3 π 4 5 π 4 ( 1 + cos ( θ ) ) 3 sin ( θ ) d θ = I_{1} = \dfrac{2\pi}{3}\int_{\dfrac{\pi}{4}}^{\dfrac{5\pi}{4}} (1 + \cos(\theta))^3 \sin(\theta) d\theta = 2 π 3 π 4 5 π 4 ( 1 + 3 cos ( θ ) + 3 cos 2 ( θ ) + cos 3 ( θ ) ) sin ( θ ) d θ = 2 π 3 ( cos ( θ ) 3 2 cos 2 ( θ ) cos 3 ( θ ) 1 4 cos 4 ( θ ) ) π 4 5 π 4 = \dfrac{2\pi}{3}\int_{\dfrac{\pi}{4}}^{\dfrac{5\pi}{4}} (1 + 3\cos(\theta) + 3\cos^2(\theta) + \cos^3(\theta)) \sin(\theta) d\theta = \dfrac{2\pi}{3}(\cos(\theta) - \dfrac{3}{2}\cos^2(\theta) - \cos^3(\theta) - \dfrac{1}{4}\cos^4(\theta))|_{\dfrac{\pi}{4}}^{\dfrac{5\pi}{4}} =

2 π 3 ( 1 2 3 4 + 1 2 2 1 16 ( 1 2 3 4 1 2 2 1 16 ) = 2 π 3 ( 2 + 1 2 ) = 2 π 3 ( 3 2 ) = 2 π \dfrac{2\pi}{3}(\dfrac{1}{\sqrt{2}} - \dfrac{3}{4} + \dfrac{1}{2\sqrt{2}} - \dfrac{1}{16} - (-\dfrac{1}{\sqrt{2}} - \dfrac{3}{4} - \dfrac{1}{2\sqrt{2}} - \dfrac{1}{16}) = \dfrac{2\pi}{3}(\sqrt{2} + \dfrac{1}{\sqrt{2}}) = \dfrac{2\pi}{3}(\dfrac{3}{\sqrt{2}}) = \boxed{\sqrt{2}\pi} .

Let I 2 = 2 π 3 5 π 4 9 π 4 ( 1 + sin ( θ ) ) 3 sin ( θ ) d θ = I_{2} = \dfrac{2\pi}{3}\int_{\dfrac{5\pi}{4}}^{\dfrac{9\pi}{4}} (1 + \sin(\theta))^3 \sin(\theta) d\theta =

2 π 3 5 π 4 9 π 4 ( 4 sin ( θ ) + 2 cos ( 2 θ ) 3 ( cos ( θ ) ) 2 sin ( θ ) + 1 8 cos ( 4 θ ) + 15 8 ) d θ = \dfrac{2\pi}{3}\int_{\dfrac{5\pi}{4}}^{\dfrac{9\pi}{4}} (4\sin(\theta) + 2\cos(2\theta) - 3(\cos(\theta))^2 \sin(\theta) + \dfrac{1}{8}\cos(4\theta) + \dfrac{15}{8}) d\theta =

2 π 3 ( 4 cos ( θ ) + sin ( 2 θ ) + cos 3 ( θ ) + 1 32 sin ( 4 θ ) + 15 8 θ ) 5 π 4 9 π 4 = 2 π 3 ( 15 π 8 7 2 ) \dfrac{2\pi}{3}(-4\cos(\theta) + \sin(2\theta) + \cos^3(\theta) + \dfrac{1}{32}\sin(4\theta) + \dfrac{15}{8}\theta)|_{\dfrac{5\pi}{4}}^{\dfrac{9\pi}{4}} = \boxed{\dfrac{2\pi}{3}(\dfrac{15\pi}{8} - \dfrac{7}{\sqrt{2}})}

V = I 1 + I 2 = 2 π 3 ( 15 π 8 2 2 ) 6.41316158 \implies V = I_{1} + I_{2} = \dfrac{2\pi}{3}(\dfrac{15\pi}{8} - 2\sqrt{2}) \approx \boxed{6.41316158}

0 pending reports

×

Problem Loading...

Note Loading...

Set Loading...