Volume of solids of revolution

Calculus Level pending

Let V 1 V_{1} be the volume of the region y = ( x 1 ) ( x 2 ) ( x + 3 ) ( x + 4 ) , x 2 y = \dfrac{(x - 1)(x - 2)}{(x + 3)(x + 4)}, x \geq -2 revolved about the line y = 1 y = 1 , and V 2 V_{2} be the volume of the region y = ( x 1 ) ( x 2 ) ( x + 3 ) ( x + 4 ) , x 5 y = \dfrac{(x - 1)(x - 2)}{(x + 3)(x + 4)}, x \leq -5 revolved about the line y = 1 y = 1 .

If V 2 V 1 V_{2} - V_{1} can be expressed as a π a\pi , find a a .


The answer is 250.

This section requires Javascript.
You are seeing this because something didn't load right. We suggest you, (a) try refreshing the page, (b) enabling javascript if it is disabled on your browser and, finally, (c) loading the non-javascript version of this page . We're sorry about the hassle.

1 solution

Rocco Dalto
Nov 19, 2016

The Volume V 1 = π 2 ( 1 y ) 2 d x = V_{1} = \pi * \int_{-2}^{\infty} (1 - y)^2 \: dx = 100 π 2 x 2 + 2 x + 1 ( x + 3 ) 2 ( x + 4 ) 2 100\pi * \int_{-2}^{\infty} \dfrac{x^2 + 2x + 1}{(x + 3)^2 (x + 4)^2} \:

Using partial fractions we obtain:

x 2 + 2 x + 1 ( x + 3 ) 2 ( x + 4 ) 2 = A x + 3 + B ( x + 3 ) 2 + C ( x + 4 ) + D ( x + 4 ) 2 \dfrac{x^2 + 2x + 1}{(x + 3)^2 (x + 4)^2} = \dfrac{A}{x + 3} + \dfrac{B}{(x + 3)^2} + \dfrac{C}{(x + 4)} + \dfrac{D}{(x + 4)^2}

\implies

x 2 + 2 x + 1 = ( A + C ) x 3 + ( 11 A + B + 10 C + D ) x 2 + ( 40 A + 8 B + 33 C + 6 D ) + x^2 + 2x + 1 = (A + C) x^3 + (11A + B + 10C + D) x^2 + (40A + 8B + 33C + 6D) + ( 48 A + 16 B + 36 C + 9 D ) (48A + 16B + 36C + 9D)

\implies

A = C A = -C \implies

B C + D = 1 B - C + D = 1

8 B 7 C + 6 D = 2 8B - 7C + 6D = 2

16 B 12 C + 9 D = 1 16B - 12C + 9D = 1

\implies

2 C 3 D = 3 2C - 3D = -3

C 2 D = 6 C - 2D = -6

D = 9 , C = 12 A = 12 B = 4 \implies D = 9, C = 12 \implies A = -12 \implies B = 4

\implies

V 1 = 100 π 2 ( 12 x + 3 + 4 ( x + 3 ) 2 + 12 x + 4 + 9 ( x + 4 ) 2 ) d x = V_{1} = 100\pi * \int_{-2}^{\infty} (\dfrac{-12}{x + 3} + \dfrac{4}{(x + 3)^2} + \dfrac{12}{x + 4} + \dfrac{9}{(x + 4)^2}) \: dx =

100 π ( 12 ln ( 1 + 1 x + 3 ) 4 x + 3 9 x + 4 ) 2 = 100\pi * (12 * \ln(1 + \dfrac{1}{x + 3}) - \dfrac{4}{x + 3} - \dfrac{9}{x +4})|_{-2}^{\infty} =

100 π ( 17 2 12 ln ( 2 ) ) 100\pi * (\dfrac{17}{2} - 12 * \ln(2))

Similarly, for V 2 V_{2} we have:

V 2 = π 5 ( y 1 ) 2 d x = V_{2} = \pi * \int_{-\infty}^{-5} (y - 1)^2 \: dx =

100 π 5 x 2 + 2 x + 1 ( x + 3 ) 2 ( x + 4 ) 2 d x 100\pi * \int_{-\infty}^{-5} \dfrac{x^2 + 2x + 1}{(x + 3)^2 (x + 4)^2} \: dx

100 π ( 12 ln ( 1 + 1 x + 3 ) 4 x + 3 9 x + 4 ) 5 = 100\pi * (12 * \ln(1 + \dfrac{1}{x + 3}) - \dfrac{4}{x + 3} - \dfrac{9}{x +4})|_{-\infty}^{-5} =

100 π ( 12 ln ( 1 2 ) + 11 ) 100\pi * (12 * \ln(\dfrac{1}{2}) + 11)

\implies

V 2 V 1 = 250 π = a π a = 250. V_{2} - V_{1} = 250\pi = a\pi \implies a = 250.

Nice! Ik didn't have the time nor the paper to write it out, but I would have solved it the same way

Peter van der Linden - 4 years, 6 months ago

0 pending reports

×

Problem Loading...

Note Loading...

Set Loading...