Volume of solids of Revolution and Polar Functions.

Calculus Level 4

Find the volume formed when the region inside r = sin ( θ ) r = \sin(\theta) and r = sin ( 3 θ ) r = \sin(3\theta) is revolved about the x axis.

Express the volume to five decimal places.


The answer is 0.26698.

This section requires Javascript.
You are seeing this because something didn't load right. We suggest you, (a) try refreshing the page, (b) enabling javascript if it is disabled on your browser and, finally, (c) loading the non-javascript version of this page . We're sorry about the hassle.

1 solution

Rocco Dalto
Jun 30, 2018

Note: The volume V = 2 π R y d y d x = V = 2\pi\int \int_{R} y dydx = 2 π θ 1 θ 2 0 r ( θ ) r 2 sin ( θ ) d r d θ = 2\pi\int_{\theta_{1}}^{\theta_{2}} \int_{0}^{r(\theta)} r^2\sin(\theta) dr d\theta = 2 π 3 θ 1 θ 2 ( r ( θ ) ) 3 sin ( θ ) d θ \dfrac{2\pi}{3}\int_{\theta_{1}}^{\theta_{2}} (r(\theta))^3 \sin(\theta) d\theta .

In the first quadrant sin ( 3 θ ) = sin ( θ ) 3 sin ( θ ) 4 sin 3 ( θ ) = sin ( θ ) 2 sin ( θ ) ( 1 2 sin 2 ( θ ) ) = 0 θ = 0 , π 4 \sin(3\theta) = \sin(\theta) \implies 3\sin(\theta) - 4\sin^3(\theta) = \sin(\theta) \implies 2\sin(\theta)(1 - 2\sin^2(\theta)) = 0 \implies \theta = 0, \dfrac{\pi}{4} and sin ( 3 θ ) = 0 θ = π 3 \sin(3\theta) = 0 \implies \theta = \dfrac{\pi}{3} \implies .

r = sin ( θ ) r = \sin(\theta) on the branch ( 0 θ π 4 ) (0 \leq \theta \leq \dfrac{\pi}{4}) and r = sin ( 3 θ ) r = \sin(3\theta) on the branch ( π 4 θ π 3 ) (\dfrac{\pi}{4} \leq \theta \leq \dfrac{\pi}{3}) .

V = 4 π 3 ( 0 π 4 sin 4 ( θ ) d θ + π 4 π 3 sin 3 ( 3 θ ) sin ( θ ) d θ ) V = \dfrac{4\pi}{3}(\int_{0}^{\dfrac{\pi}{4}} \sin^{4}(\theta) d\theta + \int_{\dfrac{\pi}{4}}^{\dfrac{\pi}{3}} \sin^{3}(3\theta) \sin(\theta) d\theta) .

Let I 1 = 0 π 4 sin 4 ( θ ) d θ I_{1} = \int_{0}^{\dfrac{\pi}{4}} \sin^{4}(\theta) d\theta :

I 1 = 1 4 0 π 4 3 2 2 cos ( 2 θ ) + 1 2 cos ( 4 θ ) d θ = 1 4 ( 3 2 θ sin ( 2 θ ) + 1 8 sin ( 4 θ ) ) 0 π 4 = 3 π 32 1 4 I_{1} = \dfrac{1}{4}\int_{0}^{\dfrac{\pi}{4}} \dfrac{3}{2} - 2\cos(2\theta) + \dfrac{1}{2}\cos(4\theta) \:\ d\theta = \dfrac{1}{4}(\dfrac{3}{2}\theta -\sin(2\theta) + \dfrac{1}{8}\sin(4\theta))|_{0}^{\dfrac{\pi}{4}} = \dfrac{3\pi}{32} - \dfrac{1}{4} .

Let I 2 = π 4 π 3 sin 3 ( 3 θ ) sin ( θ ) d θ I_{2} = \int_{\dfrac{\pi}{4}}^{\dfrac{\pi}{3}} \sin^{3}(3\theta) \sin(\theta) d\theta :

I 2 = 1 8 π 4 π 3 ( 3 cos ( 2 θ ) 3 cos ( 4 θ ) cos ( 8 θ ) + cos ( 10 θ ) ) d θ I_{2} = \dfrac{1}{8}\int_{\dfrac{\pi}{4}}^{\dfrac{\pi}{3}} \int (3\cos(2\theta) - 3\cos(4\theta) - \cos(8\theta) + \cos(10\theta)) d\theta = 3 16 sin ( 2 θ ) 3 32 sin ( 4 θ ) 1 64 sin ( 8 θ ) + 1 80 sin ( 10 θ ) π 4 π 3 = = \dfrac{3}{16}\sin(2\theta) - \dfrac{3}{32}\sin(4\theta) - \dfrac{1}{64}\sin(8\theta) + \dfrac{1}{80}\sin(10\theta)|_{\dfrac{\pi}{4}}^{\dfrac{\pi}{3}} = 81 3 640 1 5 \dfrac{81\sqrt{3}}{640} - \dfrac{1}{5}

V = 4 π 3 ( I 1 + I 2 ) = π 480 ( 81 3 288 + 60 π ) \implies V = \dfrac{4\pi}{3}(I_{1} + I_{2}) = \dfrac{\pi}{480}(81\sqrt{3} - 288 + 60\pi) \approx 0.26698 \boxed{0.26698} .

0 pending reports

×

Problem Loading...

Note Loading...

Set Loading...