Let .
Let and .
If and and is the volume of the region bounded by the two curves and on when revolved about the -axis and is the volume of the region bounded by the two curves and on when revolved about the -axis, find to eight decimal places.
This section requires Javascript.
You are seeing this because something didn't load right. We suggest you, (a) try
refreshing the page, (b) enabling javascript if it is disabled on your browser and,
finally, (c)
loading the
non-javascript version of this page
. We're sorry about the hassle.
Let ∣ x ∣ > 1
In general for β ∈ N
f ( x ) = ∑ n = 0 ∞ x β + n + 1 − x β + n 1 = x β ( x − 1 ) 1 ∑ 0 ∞ ( x 1 ) n = x β − 1 ( x − 1 ) 2 1
For β = 2 ⟹ f ( x ) = x ( x − 1 ) 2 1 .
For ∫ 2 ∞ ( f ( x ) ) 2 d x = ∫ 2 ∞ x 2 ( x − 1 ) 4 1 d x using partial fractions we have:
x 2 ( x − 1 ) 4 1 = x A + x 2 B + x − 1 C + ( x − 1 ) 2 D + ( x − 1 ) 3 E + ( x − 1 ) 4 F ⟹
1 = A ( x 5 − 4 x 4 + 6 x 3 − 4 x 2 + x ) + B ( x 4 − 4 x 3 + 6 x 2 − 4 x + 1 ) + C ( x 5 − 3 x 4 + 3 x 3 − x 2 )
+ D ( x 4 − 2 x 3 + x 2 ) + E ( x 3 − x 2 ) + F x 2 ⟹
A + C = 0
− 4 A + B − 3 C + D = 0
6 A − 4 B + 3 C − 2 D + E = 0
− 4 A + 6 B − C + D − E + F = 0
A − 4 B = 0
B = 1 ⟹ A = 4 ⟹ C = − 4 ⟹ D = 3 ⟹ E = − 2 ⟹ F = 1 ⟹
∫ 2 ∞ ( f ( x ) ) 2 d x = ∫ 2 ∞ ( x 4 + x 2 1 − x − 1 4 + ( x − 1 ) 2 3 − ( x − 1 ) 3 2 + ( x − 1 ) 4 1 ) d x =
4 ln ( 1 + x − 1 1 ) − x 1 − ( x − 1 ) 3 + ( x − 1 ) 2 1 − 3 ( x − 1 ) 3 1 ∣ 2 ∞ = 6 1 7 − ln ( 1 6 ) .
Let g ( x ) = a x + b 1
g ( 2 ) = f ( 2 ) = 2 1 and g ( − 2 ) = f ( − 2 ) = 1 8 − 1 ⟹
2 a + b = 2
− 2 a + b = − 1 8
⟹ b = − 8 and a = 5 ⟹ g ( x ) = 5 x − 8 1 ⟹
∫ 2 ∞ ( g ( x ) ) 2 d x = − 5 1 ( 5 x − 8 1 ) ∣ 2 ∞ = 1 0 1
⟹ V 1 = π ∫ 2 ∞ ( g ( x ) ) 2 − ( f ( x ) ) 2 d x = π ( ln ( 1 6 ) − 1 5 4 1 ) ≈ 0 . 1 2 3 3 2 4 4 4 .
Similarly, ∫ − ∞ − 2 ( f ( x ) ) 2 d x = π ( ln ( 8 1 1 6 ) + 1 6 2 2 6 3 ) and ∫ − ∞ − 2 ( g ( x ) ) 2 d x = 9 0 π
⟹ V 2 = π ∫ − ∞ 2 ( g ( x ) ) 2 − ( f ( x ) ) 2 d x = π ( − 4 0 5 6 5 3 − ln ( 8 1 1 6 ) ) ≈ 0 . 0 2 9 8 9 1 4 8
⟹ V 1 + V 2 = 0 . 1 5 3 2 1 5 9 2 .