Volume of Solids of Revolution revisited.

Level pending

Let x > 1 |x| > 1 .

Let f ( x ) = n = 0 1 x 3 + n x 2 + n f(x) = \sum_{n = 0}^{\infty} \dfrac{1}{x^{3 + n} - x^{2 + n}} and g ( x ) = 1 a x + b g(x) = \dfrac{1}{ax + b} .

If g ( 2 ) = f ( 2 ) g(2) = f(2) and g ( 2 ) = f ( 2 ) g(-2) = f(-2) and V 1 V_{1} is the volume of the region bounded by the two curves f ( x ) f(x) and g ( x ) g(x) on [ 2 , ) [2,\infty) when revolved about the x x -axis and V 2 V_{2} is the volume of the region bounded by the two curves f ( x ) f(x) and g ( x ) g(x) on ( , 2 ] (-\infty,-2] when revolved about the x x -axis, find V 1 + V 2 V_{1} + V_{2} to eight decimal places.


The answer is 0.15321592.

This section requires Javascript.
You are seeing this because something didn't load right. We suggest you, (a) try refreshing the page, (b) enabling javascript if it is disabled on your browser and, finally, (c) loading the non-javascript version of this page . We're sorry about the hassle.

1 solution

Rocco Dalto
Jul 17, 2018

Let x > 1 |x| > 1

In general for β N \beta \in \mathbb{N}

f ( x ) = n = 0 1 x β + n + 1 x β + n = 1 x β ( x 1 ) 0 ( 1 x ) n = 1 x β 1 ( x 1 ) 2 f(x) = \sum_{n = 0}^{\infty} \dfrac{1}{x^{\beta + n + 1} - x^{\beta + n}} = \dfrac{1}{x^{\beta}(x - 1)}\sum_{0}^{\infty} (\dfrac{1}{x})^{n} = \dfrac{1}{x^{\beta - 1}(x - 1)^2}

For β = 2 f ( x ) = 1 x ( x 1 ) 2 \beta = 2 \implies f(x) = \dfrac{1}{x(x - 1)^2} .

For 2 ( f ( x ) ) 2 d x = 2 1 x 2 ( x 1 ) 4 d x \int_{2}^{\infty} (f(x))^2 dx = \int_{2}^{\infty} \dfrac{1}{x^2(x - 1)^4} dx using partial fractions we have:

1 x 2 ( x 1 ) 4 = A x + B x 2 + C x 1 + D ( x 1 ) 2 + E ( x 1 ) 3 + F ( x 1 ) 4 \dfrac{1}{x^2(x - 1)^4} = \dfrac{A}{x} + \dfrac{B}{x^2} + \dfrac{C}{x - 1} + \dfrac{D}{(x - 1)^2} + \dfrac{E}{(x - 1)^3} + \dfrac{F}{(x - 1)^4} \implies

1 = A ( x 5 4 x 4 + 6 x 3 4 x 2 + x ) + B ( x 4 4 x 3 + 6 x 2 4 x + 1 ) + C ( x 5 3 x 4 + 3 x 3 x 2 ) 1 = A(x^5 - 4x^4 + 6x^3 - 4x^2 + x) + B(x^4 - 4x^3 + 6x^2 - 4x + 1) + C(x^5 - 3x^4 + 3x^3 - x^2)

+ D ( x 4 2 x 3 + x 2 ) + E ( x 3 x 2 ) + F x 2 + D(x^4 - 2x^3 + x^2) + E(x^3 - x^2) + Fx^2 \implies

A + C = 0 A + C = 0

4 A + B 3 C + D = 0 -4A + B - 3C + D = 0

6 A 4 B + 3 C 2 D + E = 0 6A - 4B + 3C - 2D + E = 0

4 A + 6 B C + D E + F = 0 -4A + 6B - C + D - E + F = 0

A 4 B = 0 A - 4B = 0

B = 1 A = 4 C = 4 D = 3 E = 2 F = 1 B = 1 \implies A = 4 \implies C = -4 \implies D = 3 \implies E = -2 \implies F = 1 \implies

2 ( f ( x ) ) 2 d x = 2 ( 4 x + 1 x 2 4 x 1 + 3 ( x 1 ) 2 2 ( x 1 ) 3 + 1 ( x 1 ) 4 ) d x = \int_{2}^{\infty} (f(x))^2 dx = \int_{2}^{\infty} (\dfrac{4}{x} + \dfrac{1}{x^2} - \dfrac{4}{x - 1} + \dfrac{3}{(x - 1)^2} - \dfrac{2}{(x - 1)^3} + \dfrac{1}{(x - 1)^4}) dx =

4 ln ( 1 + 1 x 1 ) 1 x 3 ( x 1 ) + 1 ( x 1 ) 2 1 3 ( x 1 ) 3 2 = 17 6 ln ( 16 ) 4\ln(1 + \dfrac{1}{x - 1}) - \dfrac{1}{x} - \dfrac{3}{(x - 1)} + \dfrac{1}{(x - 1)^2} - \dfrac{1}{3(x - 1)^3}|_{2}^{\infty} = \dfrac{17}{6} - \ln(16) .

Let g ( x ) = 1 a x + b g(x) = \dfrac{1}{ax + b}

g ( 2 ) = f ( 2 ) = 1 2 g(2) = f(2) = \dfrac{1}{2} and g ( 2 ) = f ( 2 ) = 1 18 g(-2) = f(-2) = \dfrac{-1}{18} \implies

2 a + b = 2 2a + b = 2

2 a + b = 18 -2a + b = -18

b = 8 \implies b = -8 and a = 5 g ( x ) = 1 5 x 8 a = 5 \implies g(x) = \dfrac{1}{5x - 8} \implies

2 ( g ( x ) ) 2 d x = 1 5 ( 1 5 x 8 ) 2 = 1 10 \int_{2}^{\infty} (g(x))^2 dx = -\dfrac{1}{5}(\dfrac{1}{5x - 8})|_{2}^{\infty} = \dfrac{1}{10}

V 1 = π 2 ( g ( x ) ) 2 ( f ( x ) ) 2 d x = π ( ln ( 16 ) 41 15 ) 0.12332444 \implies V_{1} = \pi\int_{2}^{\infty} (g(x))^2 - (f(x))^2 dx = \pi(\ln(16) - \dfrac{41}{15}) \approx \boxed{0.12332444} .

Similarly, 2 ( f ( x ) ) 2 d x = π ( ln ( 16 81 ) + 263 162 ) \int_{-\infty}^{-2} (f(x))^2 dx = \pi(\ln(\dfrac{16}{81}) + \dfrac{263}{162}) and 2 ( g ( x ) ) 2 d x = π 90 \int_{-\infty}^{-2} (g(x))^2 dx = \dfrac{\pi}{90}

V 2 = π 2 ( g ( x ) ) 2 ( f ( x ) ) 2 d x = π ( 653 405 ln ( 16 81 ) ) 0.02989148 \implies V_{2} = \pi\int_{-\infty}^{2} (g(x))^2 - (f(x))^2 dx = \pi(-\dfrac{653}{405} - \ln(\dfrac{16}{81})) \approx \boxed{0.02989148}

V 1 + V 2 = 0.15321592 \implies V_{1} + V_{2} = \boxed{0.15321592} .

0 pending reports

×

Problem Loading...

Note Loading...

Set Loading...