Volume of the prism

Geometry Level 2

The diagram shows a prism whose cross section is a regular octagon of apothem 4 m 4 \text{ m} . Its height is 8 m 8 \text{ m} . Calculate the volume of the prism to the nearest m 3 \text{m}^3 .

424 m 3 424 \text{ m}^3 212 m 3 212 \text{ m}^3 500 m 3 500 \text{ m}^3 392 m 3 392 \text{ m}^3 477 m 3 477 \text{ m}^3

This section requires Javascript.
You are seeing this because something didn't load right. We suggest you, (a) try refreshing the page, (b) enabling javascript if it is disabled on your browser and, finally, (c) loading the non-javascript version of this page . We're sorry about the hassle.

2 solutions

Chew-Seong Cheong
May 28, 2017

The central angle of the regular octagon θ = 36 0 8 \theta = \dfrac {360^\circ}8 . Let the radius of the circumcircle of the octagon be r r . Then r = 4 cos θ 2 r = \dfrac 4{\cos \frac \theta 2} . And:

  • The area of a central triangle A = 1 2 ( 4 cos θ 2 ) 2 sin θ A_\triangle = \dfrac 12 \left(\dfrac {4}{\cos \frac \theta 2}\right)^2 \sin \theta
  • The area of the octagon A oct = 8 A = 4 3 sin θ cos 2 θ 2 A_\text{oct} = 8A_\triangle = \dfrac {4^3\sin \theta}{\cos^2 \frac \theta 2}
  • The volume of the prism V = l A oct = 8 × 4 3 × 2 sin θ 2 cos θ 2 cos 2 θ 2 = 4 5 tan θ 2 = 1024 tan 22. 5 424 m 3 V = l A_\text{oct} = \dfrac {8 \times 4^3 \times 2 \sin \frac \theta 2\cos \frac \theta 2}{\cos^2 \frac \theta 2} = 4^5 \tan \frac \theta 2 = 1024 \tan 22.5^\circ \approx \boxed{424 \text{ m}^3}

Consider the diagram.

tan 22.5 = x 4 \tan 22.5=\dfrac{x}{4}

x = 4 tan 22.5 x=4\tan 22.5

2 x = 8 tan 22.5 2x=8\tan 22.5

A r e a o f t h e b a s e = 8 ( 1 2 ) ( 4 ) ( 8 tan 22.5 ) 53.019 Area~of~the~base=8\left(\dfrac{1}{2}\right)(4)(8\tan 22.5)\approx 53.019

Therefore the volume is 53.019 ( 8 ) 53.019(8)\approx 424 \boxed{424}

0 pending reports

×

Problem Loading...

Note Loading...

Set Loading...