Weird Volume of Revolution

Calculus Level 3

A region bounded by y = 2 x 2 y = \sqrt 2 x^2 and y = x y = x is rotated about a line y = x y = x . If the volume of revolution can be expressed as a b π \frac{a}{b}\pi , with a , b N a,b \in \mathbb{N} and g c d ( a , b ) = 1 gcd(a,b) = 1 ,

what is a + b a + b ?

107 123 121 113

This section requires Javascript.
You are seeing this because something didn't load right. We suggest you, (a) try refreshing the page, (b) enabling javascript if it is disabled on your browser and, finally, (c) loading the non-javascript version of this page . We're sorry about the hassle.

2 solutions

Hosam Hajjir
Mar 30, 2021

The intersection of the two curves is at x = 2 x 2 x = \sqrt{2} x^2 , which is at x = 0 x=0 and x = 1 2 x = \dfrac{1}{\sqrt{2}} . Given a point ( x , 2 x 2 ) (x , \sqrt{2} x^2) on the parabola, its perpendicular distance to the line y = x y = x is given by

r = 1 2 ( x 2 x 2 ) r = \dfrac{1}{\sqrt{2}} ( x - \sqrt{2} x^2 )

The thickness of the disc is 2 d x \sqrt{2} dx , hence the volume is given by

V = 0 1 2 2 π r 2 d x \displaystyle V = \int_{0}^{\frac{1}{\sqrt{2}}} \sqrt{2} \pi r^2 dx

Plugging the expression for r r from above, we get

V = 2 0 1 2 π 1 2 ( x 2 x 2 ) 2 d x \displaystyle V = \sqrt{2} \int_{0}^{\frac{1}{\sqrt{2}}} \pi \frac{1}{2} (x - \sqrt{2} x^2)^2 dx

Expanding, and integrating, this becomes,

V = 2 2 π 0 1 2 ( x 2 2 2 x 3 + 2 x 4 ) d x \displaystyle V = \dfrac{\sqrt{2}}{2} \pi \int_0^{\frac{1}{\sqrt{2}}} (x^2 - 2 \sqrt{2} x^3 + 2 x^4 ) dx

V = 2 2 π ( 1 3 ( 1 2 ) 3 2 2 ( 1 / 2 ) + 2 5 ( 1 2 ) 5 ) \displaystyle V = \frac{\sqrt{2}}{2} \pi \left( \frac{1}{3} (\frac{1}{\sqrt{2}})^3 - \frac{\sqrt{2}}{2} (1/2) + \dfrac{2}{5} (\frac{1}{\sqrt{2}})^5 \right)

V = 1 2 π ( 1 6 1 4 + 1 10 ) = 1 2 π ( 1 60 ) ( 10 15 + 6 ) = π ( 1 120 ) \displaystyle V = \frac{1}{2} \pi \left( \frac{1}{6} - \frac{1}{4} + \frac{1}{10} \right) = \frac{1}{2} \pi (\frac{1}{60} )(10 - 15 + 6) = \pi (\dfrac{1}{120})

So that a = 1 , b = 120 a = 1 , b = 120 , making the answer 1 + 120 = 121 1 + 120 = 121 .

David Vreken
Mar 30, 2021

The parabola y = 2 x 2 y = \sqrt{2}x^2 is equivalent to 2 x 2 y = 0 \sqrt{2}x^2 - y = 0 , an equation in standard form where A = 2 A = \sqrt{2} , E = 1 E = -1 , and B = C = D = 0 B = C = D = 0 . If we rotate it by 45 ° 45° , then:

A = A cos 2 45 ° + B sin 45 ° cos 45 ° + C sin 2 45 ° = 2 2 A' = A \cos^2 45° + B \sin 45° \cos 45° + C \sin^2 45°= \frac{\sqrt{2}}{2}

B = 2 ( C A ) sin 45 ° cos 45 ° + B ( cos 2 45 ° sin 2 45 ° ) = 2 B' = 2(C - A) \sin 45° \cos 45° + B(\cos^2 45° - \sin^2 45°) = -\sqrt{2}

C = A sin 2 45 ° B sin 45 ° cos 45 ° + C cos 2 45 ° = 2 2 C' = A \sin^2 45° - B \sin 45° \cos 45° + C \cos^2 45°= \frac{\sqrt{2}}{2}

D = D cos 45 ° + E sin 45 ° = 2 2 D' = D \cos 45° + E \sin 45°= -\frac{\sqrt{2}}{2}

E = D sin 45 ° + E cos 45 ° = 2 2 E' = -D \sin 45° + E \cos 45°= -\frac{\sqrt{2}}{2}

for a new equation of 2 2 x 2 2 x y + 2 2 y 2 2 2 x 2 2 y = 0 \frac{\sqrt{2}}{2}x^2 - \sqrt{2}xy + \frac{\sqrt{2}}{2}y^2 - \frac{\sqrt{2}}{2}x - \frac{\sqrt{2}}{2}y = 0 , which rearranges to y = x + 1 2 1 2 8 x + 1 y = x + \frac{1}{2} - \frac{1}{2}\sqrt{8x + 1} .

The line y = x y = x rotates to y = 0 y = 0 after a 45 ° 45° rotation, which intersects y = x + 1 2 1 2 8 x + 1 y = x + \frac{1}{2} - \frac{1}{2}\sqrt{8x + 1} at ( 0 , 0 ) (0, 0) and ( 1 , 0 ) (1, 0) .

The volume is then V = 0 1 π ( x + 1 2 1 2 8 x + 1 ) 2 d x V = \int_{0}^{1} \pi(x + \frac{1}{2} - \frac{1}{2}\sqrt{8x + 1})^2 dx .

Substituting u = 8 x + 1 u = \sqrt{8x + 1} and rearranging gives V = 1 3 π 256 ( u 5 8 u 4 + 22 u 3 24 u 2 + 9 u ) d u = 1 120 π V = \int_{1}^{3} \cfrac{\pi}{256}(u^5 - 8u^4 + 22u^3 - 24u^2 + 9u) du = \cfrac{1}{120}\pi .

Therefore, a = 1 a = 1 , b = 120 b = 120 , and a + b = 121 a + b = \boxed{121} .

0 pending reports

×

Problem Loading...

Note Loading...

Set Loading...