Volume of solids of revolution using polar coordinates

Calculus Level 4

The volume V V formed when the region inside both r = sin ( θ ) r = \sin(\theta) and r = 1 sin ( θ ) r = 1 - \sin(\theta) is revolved about the x x axis can be expressed as V = π ( α β λ β β π λ λ ) V = \pi(\dfrac{\alpha\sqrt{\beta}}{\lambda^{\beta}} - \dfrac{\beta\pi}{\lambda^{\lambda}}) , where α , β , λ \alpha,\beta,\lambda are coprime positive integers.

Find α + β + λ \alpha + \beta + \lambda .


The answer is 16.

This section requires Javascript.
You are seeing this because something didn't load right. We suggest you, (a) try refreshing the page, (b) enabling javascript if it is disabled on your browser and, finally, (c) loading the non-javascript version of this page . We're sorry about the hassle.

1 solution

Rocco Dalto
Jun 22, 2018

Note: The volume V = 2 π R y d y d x = V = 2\pi\int \int_{R} y dydx = 2 π θ 1 θ 2 0 r ( θ ) r 2 sin ( θ ) d r d θ = 2\pi\int_{\theta_{1}}^{\theta_{2}} \int_{0}^{r(\theta)} r^2\sin(\theta) dr d\theta = 2 π 3 θ 1 θ 2 ( r ( θ ) ) 3 sin ( θ ) d θ \dfrac{2\pi}{3}\int_{\theta_{1}}^{\theta_{2}} (r(\theta))^3 \sin(\theta) d\theta

r = sin ( θ ) r = \sin(\theta) on the branch ( 0 θ π 6 ) (0 \leq \theta \leq \dfrac{\pi}{6}) and r = 1 sin ( θ ) r = 1 - \sin(\theta) on the branch ( π 6 θ π 2 ) (\dfrac{\pi}{6} \leq \theta \leq \dfrac{\pi}{2}) .

V = 4 π 3 ( 0 π 6 sin 4 ( θ ) d θ + π 6 π 2 ( 1 sin ( θ ) ) 3 sin ( θ ) d θ ) V = \dfrac{4\pi}{3}(\int_{0}^{\dfrac{\pi}{6}} \sin^{4}(\theta) d\theta + \int_{\dfrac{\pi}{6}}^{\dfrac{\pi}{2}} (1 - \sin(\theta))^3 \sin(\theta) d\theta) .

Let I 1 = 0 π 6 sin 4 ( θ ) d θ I_{1} = \int_{0}^{\dfrac{\pi}{6}} \sin^{4}(\theta) d\theta :

I 1 = 1 4 0 π 6 3 2 2 cos ( 2 θ ) + 1 2 cos ( 4 θ ) d θ = 1 4 ( 3 2 θ sin ( 2 θ ) + 1 8 sin ( 4 θ ) ) 0 π 6 = π 16 7 3 64 I_{1} = \dfrac{1}{4}\int_{0}^{\dfrac{\pi}{6}} \dfrac{3}{2} - 2\cos(2\theta) + \dfrac{1}{2}\cos(4\theta) \:\ d\theta = \dfrac{1}{4}(\dfrac{3}{2}\theta -\sin(2\theta) + \dfrac{1}{8}\sin(4\theta))_{0}^{\dfrac{\pi}{6}} = \dfrac{\pi}{16} - \dfrac{7\sqrt{3}}{64}

Let I 2 = π 6 π 2 ( 1 sin ( θ ) ) 3 sin ( θ ) d θ I_{2} = \int_{\dfrac{\pi}{6}}^{\dfrac{\pi}{2}} (1 - \sin(\theta))^3 \sin(\theta) d\theta .

I 2 = π 6 π 2 4 sin ( θ ) + 2 cos ( 2 θ ) + 3 ( cos ( θ ) 2 ( sin ( θ ) ) cos ( 4 θ ) 8 15 8 ) d θ = I_{2} = \int_{\dfrac{\pi}{6}}^{\dfrac{\pi}{2}} 4\sin(\theta) + 2\cos(2\theta) + 3(\cos(\theta)^2(-\sin(\theta)) - \dfrac{\cos(4\theta)}{8} - \dfrac{15}{8}) \:\ d\theta = ( 4 cos ( θ ) + sin ( 2 θ ) + ( cos ( θ ) ) 3 1 32 sin ( 4 θ ) 15 8 θ ) π 6 π 2 = 73 3 64 5 π 8 (-4\cos(\theta) + \sin(2\theta) + (\cos(\theta))^3 - \dfrac{1}{32}\sin(4\theta) - \dfrac{15}{8}\theta)|_{\dfrac{\pi}{6}}^{\dfrac{\pi}{2}} = \dfrac{73\sqrt{3}}{64} - \dfrac{5\pi}{8}

V = 4 π 3 ( I 1 + I 2 ) = π ( 11 3 8 3 π 4 ) = π ( 11 3 2 3 3 π 2 2 ) = \implies V = \dfrac{4\pi}{3}(I_{1} + I_{2}) = \pi(\dfrac{11\sqrt{3}}{8} - \dfrac{3\pi}{4}) = \pi(\dfrac{11\sqrt{3}}{2^3} - \dfrac{3\pi}{2^2}) = π ( α β λ β β π λ λ ) \pi(\dfrac{\alpha\sqrt{\beta}}{\lambda^{\beta}} - \dfrac{\beta\pi}{\lambda^{\lambda}}) α + β + λ = 16 \implies \alpha + \beta + \lambda = \boxed{16} .

0 pending reports

×

Problem Loading...

Note Loading...

Set Loading...