w 2 v w^2v in Polar Form

Algebra Level 3

Given w = 3 + 3 i w=3+3i and v = 2 3 + 2 i , v=-2 \sqrt{3}+2i, w 2 v w^2v can be expressed as r ( cos α + i sin α ) , r(\cos \alpha^{\circ}+i\sin \alpha^{\circ}), where r r is a real number and 0 α 360. 0 \leq \alpha \leq 360. What is the value of r + α ? r+\alpha?

222 222 252 252 282 282 312 312

This section requires Javascript.
You are seeing this because something didn't load right. We suggest you, (a) try refreshing the page, (b) enabling javascript if it is disabled on your browser and, finally, (c) loading the non-javascript version of this page . We're sorry about the hassle.

1 solution

Tom Engelsman
Jul 22, 2018

Let u = 3 + 3 i = 3 2 e i π 4 u = 3 + 3i = 3\sqrt{2} \cdot e^{i \frac{\pi}{4}} and v = 2 3 + 2 i = 4 e i 5 π 6 v = -2\sqrt{3} + 2i = 4 \cdot e^{i \frac{5\pi}{6}} . The expression u 2 v u^{2} v computes to:

u 2 v = ( 3 2 e i π 4 ) 2 ( 4 e i 5 π 6 ) = ( 18 4 ) e i ( π 2 + 5 π 6 ) = 72 e i 4 π 3 = 72 ( c o s ( 240 ) + i s i n ( 240 ) ) . u^{2} v = (3\sqrt{2} \cdot e^{i \frac{\pi}{4}})^{2} ( 4 \cdot e^{i \frac{5\pi}{6}}) = (18 \cdot 4)e^{i (\frac{\pi}{2} + \frac{5\pi}{6}}) = 72 \cdot e^{i \frac{4\pi}{3}} = 72(cos(240) + i \cdot sin(240)).

Hence, r = 72 , α = 240 r + α = 312 . r = 72, \alpha = 240 \Rightarrow r + \alpha = \boxed{312}.

0 pending reports

×

Problem Loading...

Note Loading...

Set Loading...