Wacky Exponents!

Algebra Level 4

n = 1 1999 9 n / 2000 9 n / 2000 + 3 \large \displaystyle\sum_{n=1}^{1999}\dfrac{9^{n/2000}}{9^{n/2000}+3}

If the value of the summation above can be expressed as a b \dfrac ab , where a a and b b are coprime positive integers, find a + b a+b .


Source: Canadian Mathematics Olympiad 1.


The answer is 2001.

This section requires Javascript.
You are seeing this because something didn't load right. We suggest you, (a) try refreshing the page, (b) enabling javascript if it is disabled on your browser and, finally, (c) loading the non-javascript version of this page . We're sorry about the hassle.

2 solutions

Sudeep Salgia
Apr 25, 2014

It is clear from the given expression that we need to deal with the expression 9 x 9 x + 3 \displaystyle \frac{9^x}{9^x + 3} . So let us consider the expression in the form of a function.

Let f ( x ) = 9 x 9 x + 3 \displaystyle f(x) = \frac{9^x}{9^x + 3} .
f ( 1 x ) = 9 ( 1 x ) 9 ( 1 x ) + 3 = 9 9 + ( 3 ) ( 9 x ) = 3 9 x + 3 \Rightarrow f(1-x) = \frac{9^{(1-x)}}{9^{(1-x)} + 3} = \frac{9}{9 + (3)(9^x)} = \frac{3}{9^x + 3} .

f ( x ) + f ( 1 x ) = 9 x 9 x + 3 + 3 9 x + 3 = 1 \Rightarrow f(x) + f(1-x) = \frac{9^x}{9^x + 3} + \frac{3}{9^x + 3} = 1 .
Also, clearly f ( 1 2 ) = 1 2 \displaystyle f(\frac{1}{2}) = \frac{1}{2} .
The required sum is, f ( 1 2000 ) + f ( 2 2000 ) + + f ( 999 2000 ) + f ( 1000 2000 ) + f ( 1001 2000 ) + + f ( 1999 2000 ) f(\frac{1}{2000}) + f(\frac{2}{2000}) + \dots + f(\frac{999}{2000}) + f(\frac{1000}{2000}) + f(\frac{1001}{2000}) + \dots + f(\frac{1999}{2000})
= f ( 1 2000 ) + f ( 2 2000 ) + + f ( 999 2000 ) + f ( 1 2 ) + f ( 1 999 2000 ) + + f ( 1 1 2000 ) = f(\frac{1}{2000}) + f(\frac{2}{2000}) + \dots + f(\frac{999}{2000}) + f(\frac{1}{2}) + f(1-\frac{999}{2000}) + \dots + f(1-\frac{1}{2000}) = r = 1 999 ( f ( r 2000 ) + f ( 1 r 2000 ) ) + f ( 1 2 ) = \sum_{r=1}^{999} (f(\frac{r}{2000}) + f(1-\frac{r}{2000})) + f(\frac{1}{2})

= ( 999 ) ( 1 ) + 1 2 = 1999 2 a b = 1999 2 = (999)(1) +\frac{1}{2} = \frac{1999}{2} \Rightarrow \boxed{ \frac{a}{b} = \frac{1999}{2} } a + b = 2001 \Rightarrow \boxed{a+b = 2001}

We may note that f { 9^x} = { 3^(n/1000)} .... n = 1, 2, 3, ... 1999.

Niranjan Khanderia - 7 years, 1 month ago

very nice approach.......

Vikas Sharma - 7 years ago

Thanks for solution

priyansh thakkar - 6 years, 11 months ago

first plus last term, second plus last but one, .........all equal to one. There are 999 such pair. This gives the sum 999.
One term remaining is .....{ 9^(1000/2000)} / { 9^(1000/2000) + 3 } 199= 1/2.
Thus the total is 999.5 = 1999 / 2 = a/b. ... a + b = 2001

0 pending reports

×

Problem Loading...

Note Loading...

Set Loading...