I Feel Nostalgic!

Algebra Level 3

Let { a , b } \{a,b\} and { m , n } \{m,n\} be consecutive terms (in that order) of 2 different geometric progressions with common ratio r 1 > 0 r_1>0 and r 2 > 0 r_2>0 respectively, such that ( a b ) m = ( a + b ) n . (a-b)m=(a+b)n. Let z 1 z_1 and z 2 z_2 be 2 2 complex numbers such that arg ( z 1 z 2 ) = arctan ( r 1 ) + arctan ( r 2 ) = θ ( 0 θ π ) , arg ( z 1 z 2 ) = π 9 . \begin{aligned} \arg(z_1z_2)&=\arctan(r_1)+\arctan(r_2)=\theta\quad\quad (0\leq \theta\leq \pi), \\ \arg\left(\frac{z_1}{z_2}\right)&=\frac{\pi}9. \end{aligned}

Find 2 arg ( z 1 ) 2\arg(z_1) .

Notation: The function arg ( z ) \arg(z) denotes the argument of a complex number.

Clarification: Take the value of π = 3.1415 \pi=3.1415 .


The answer is 1.134.

This section requires Javascript.
You are seeing this because something didn't load right. We suggest you, (a) try refreshing the page, (b) enabling javascript if it is disabled on your browser and, finally, (c) loading the non-javascript version of this page . We're sorry about the hassle.

1 solution

Sravanth C.
Feb 16, 2017

We start with the fact that b = a r 1 b=ar_1 and n = m r 2 n=mr_2 , therefore ( a b ) m = ( a + b ) n a m a m r 2 = a m r 1 + a m r 1 r 2 r 1 + r 2 = 1 r 1 r 2 r 1 + r 2 1 r 1 r 2 = 1 \begin{aligned} (a-b)m&=(a+b)n\\ am-amr_2&=amr_1+amr_1r_2\\ r_1+r_2&=1-r_1r_2\\ \frac{r_1+r_2}{1-r_1r_2}&=1 \end{aligned}

Now observe the above expression, doesn't it look like tan ( A + B ) \tan(A+B) formula? Substituting r 1 = tan A r_1=\tan A and r 1 = tan B r_1=\tan B , we arrive at tan ( A + B ) = 1 A + B = arctan r 1 + arctan r 2 = arctan 1 = π / 4 \begin{aligned} \tan(A+B)&=1\\ A+B=\arctan r_1 +\arctan r_2 &=\arctan 1=\pi/4 \end{aligned}

Now combining the result with the last statements we get arg ( z 1 z 2 ) = π / 4 arg ( z 1 / z 2 ) = π / 9 adding the above equations: arg ( z 1 z 2 ) + arg ( z 1 / z 2 ) = arg ( z 1 2 ) = 2 arg z 1 = π / 4 + π / 9 = 1.134 \begin{aligned} \arg(z_1z_2)&=\pi/4\\ \arg(z_1/z_2)&=\pi/9\\ \text{adding the above equations:}\quad\arg(z_1z_2)+\arg(z_1/z_2)&=\arg(z_1^2)\\ &=2\arg z_1\\ &=\pi/4+\pi/9\\ &=1.134 \end{aligned}

Why did you state that θ 0 π \theta \leq 0 \leq \pi ? Is that a typo?

Calvin Lin Staff - 4 years, 3 months ago

Log in to reply

Yeah, sorry.

Sravanth C. - 4 years, 3 months ago

0 pending reports

×

Problem Loading...

Note Loading...

Set Loading...