Wait is it really SHM

Calculus Level 5

The time of a complete oscillation of a simple pendulum of length l l is given by T = 2 π l g T = 2\pi \cdot \sqrt{\frac{l}{g}} , where g g is a constant. Using differentials , by what per cent should the length be changed in order to correct a loss of 2 minutes per day?

Let the percent change in length be represented as A B % \frac{A}{B} \% , where A A and B B are coprime positive integers, find A + B A+B .


The answer is 23.

This section requires Javascript.
You are seeing this because something didn't load right. We suggest you, (a) try refreshing the page, (b) enabling javascript if it is disabled on your browser and, finally, (c) loading the non-javascript version of this page . We're sorry about the hassle.

1 solution

T = 2 π l g ln ( T ) = ln ( 2 π ) + ln ( l ) 2 ln ( g ) 2 D i f f e r e n t i a t e b o t h s i d e s ( 100 ) d T T = ( 100 ) d l 2 L % c h a n g e i n l e n g t h = ( 100 ) d l L % c h a n g e i n l e n g t h = 200 d T T = 200 2 ( 24 ) . ( 60 ) = 5 18 T=2\pi \sqrt { \frac { l }{ g } } \\ \ln { (T } )=\ln { (2\pi ) } +\frac { \ln { (l) } }{ 2 } -\frac { \ln { (g) } }{ 2 } \\ Differentiate\quad both\quad sides\\ (100)\frac { dT }{ T } =(100)\frac { dl }{ 2L } \\ \%\quad change\quad in\quad length\quad =(100)\frac { dl }{ L } \\ \%\quad change\quad in\quad length\quad =\quad 200\frac { dT }{ T } \\ =200\frac { 2 }{ (24).(60) } =\frac { 5 }{ 18 }

1 day=1440 min=T

I know how everyone solved this, T = 1440 , T 1 = 1442 d l l × 100 = d T T × 200 = 2 1440 × 200 = 5 18 T=1440,{ T }_{ 1 }=1442\Rightarrow \cfrac { dl }{ l } \times 100=\cfrac { dT }{ T } \times 200=\cfrac { 2 }{ 1440 } \times 200=\cfrac { 5 }{ 18 }

the point is that d l 2 l = d T T \cfrac { dl }{ 2l } =\cfrac { dT }{ T } can be used only when d t 0 , d T 0 dt\rightarrow 0,dT\rightarrow 0

Now, T 1 T = l + Δ l l 1 + Δ l l = ( T 1 T ) 2 = ( 1442 1440 ) 2 = ( 721 720 ) 2 Δ l l = ( 721 720 ) 2 1 = 1441 518400 Δ l l × 100 = 1441 5184 5 18 \cfrac { { T }_{ 1 } }{ T } =\sqrt { \cfrac { l+\Delta l }{ l } } \Rightarrow 1+\cfrac { \Delta l }{ l } ={ \left( \cfrac { { T }_{ 1 } }{ T } \right) }^{ 2 }={ \left( \cfrac { 1442 }{ 1440 } \right) }^{ 2 }={ \left( \cfrac { 721 }{ 720 } \right) }^{ 2 }\\ \\ \Rightarrow \cfrac { \Delta l }{ l } ={ \left( \cfrac { 721 }{ 720 } \right) }^{ 2 }-1=\cfrac { 1441 }{ 518400 } \\ \\ \Rightarrow \cfrac { \Delta l }{ l } \times 100=\cfrac { 1441 }{ 5184 } \simeq \cfrac { 5 }{ 18 }

so A B = 1441 5184 , A B 5 18 A n s = A + B = 1441 + 5184 = 6625 \cfrac { A }{ B } =\cfrac { 1441 }{ 5184 } ,\cfrac { A }{ B } \neq \cfrac { 5 }{ 18 } \\ \\ Ans=A+B=1441+5184=6625

Ayush Verma - 5 years, 2 months ago

0 pending reports

×

Problem Loading...

Note Loading...

Set Loading...