Wait. Number Theory?

Calculus Level 5

n = 1 m = 1 1 ( m 2 + n 2 ) 2 = π a b G π d f \large\sum _{n=1}^{\infty}\sum _{m=1}^{\infty}\dfrac{1}{(m^2+n^2)^2}=\dfrac{\pi^a}{b}G - \dfrac{\pi^d}{f}

The equation above holds true for positive integers a , b , d a,b,d and f f . Find a + b + d + f a+b+d+f .

Notation : G = n = 0 ( 1 ) n ( 2 n + 1 ) 2 0.916 \displaystyle G = \sum_{n=0}^\infty \dfrac{ (-1)^n}{(2n+1)^2} \approx 0.916 denotes the Catalan's constant .


The answer is 102.

This section requires Javascript.
You are seeing this because something didn't load right. We suggest you, (a) try refreshing the page, (b) enabling javascript if it is disabled on your browser and, finally, (c) loading the non-javascript version of this page . We're sorry about the hassle.

1 solution

Mark Hennings
Jul 26, 2016

We note that, for any s 2 s \ge 2 , a , b N 1 ( a 2 + b 2 ) s = 1 4 { a , b Z ( a , b ) ( 0 , 0 ) 1 ( a 2 + b 2 ) s 4 ζ ( 2 s ) } = 1 4 n = 1 r 2 ( n ) n s ζ ( 2 s ) \sum_{a,b \in \mathbb{N}} \frac{1}{(a^2+b^2)^s} \; = \; \frac{1}{4}\left\{ \sum_{a,b \in \mathbb{Z} \atop (a,b) \neq (0,0)} \frac{1}{(a^2+b^2)^s} - 4\zeta(2s)\right\} \; = \; \tfrac14\sum_{n=1}^\infty \frac{r_2(n)}{n^s} - \zeta(2s) where r 2 ( n ) r_2(n) is the "sum of squares" function, so that r 2 ( n ) r_2(n) is the number of ways of writing n n as the sum of the squares of two integers (including zero and negative integers and counting ordering). A standard result tells us that n = 1 r 2 ( n ) n s = 4 ζ ( s ) n = 1 ( 4 n ) n s \sum_{n=1}^\infty \frac{r_2(n)}{n^s} \;= \; 4\zeta(s) \sum_{n=1}^\infty \big(\tfrac{-4}{n}\big) n^{-s} for s 2 s \ge 2 , where ( 4 n ) \big(\tfrac{-4}{n}\big) is the Kronecker symbol. But ( 4 n ) \big(\tfrac{-4}{n}\big) is equal to 0 0 whenever n n is even, and is equal to ( 1 ) 1 2 ( n 1 ) (-1)^{\frac12(n-1)} when n n is odd. Thus n = 1 ( 4 n ) n s = n = 0 ( 1 ) n ( 2 n + 1 ) s \sum_{n=1}^\infty \big(\tfrac{-4}{n}\big) n^{-s} \; = \; \sum_{n=0}^\infty \frac{(-1)^n}{(2n+1)^s} Putting s = 2 s=2 yields a , b N 1 ( a 2 + b 2 ) 2 = ζ ( 2 ) G ζ ( 4 ) = 1 6 π 2 G 1 90 π 4 \sum_{a,b \in \mathbb{N}} \frac{1}{(a^2+b^2)^2} \; = \; \zeta(2)G - \zeta(4) \; = \; \tfrac16\pi^2 G - \tfrac{1}{90}\pi^4 where G G is the Catalan constant, making the answer 2 + 6 + 4 + 90 = 102 2+6+4+90 = \boxed{102} .

0 pending reports

×

Problem Loading...

Note Loading...

Set Loading...