Waiting for 2016! - 1

Geometry Level 5

2 19 3 cos ( 1 3 arccos ( 7 76 ) ) 1 3 \large \dfrac{2\sqrt{19}}{3} \cos \left(\dfrac{1}{3} \arccos \left(\dfrac{7}{\sqrt{76}} \right) \right) - \dfrac{1}{3}

The expression above can be simplified into the form

a ( cos ( b π e ) + cos ( c π e ) + cos ( d π e ) ) \large a \left(\cos \left(\dfrac{b \pi}{e} \right) +\cos \left(\dfrac{c \pi}{e} \right)+\cos \left(\dfrac{d \pi}{e} \right) \right)

where a , b , c , d a,b,c,d and e e are positive integers with gcd ( b , e ) = gcd ( c , e ) = gcd ( d , e ) = 1 \gcd(b,e) = \gcd(c,e) = \gcd(d,e) = 1 .

If all the angles mentioned above lie in the interval [ 0 , π ] [ 0, \pi ] , find the value of a + b + c + d + e a+b+c+d+e .


The answer is 41.

This section requires Javascript.
You are seeing this because something didn't load right. We suggest you, (a) try refreshing the page, (b) enabling javascript if it is disabled on your browser and, finally, (c) loading the non-javascript version of this page . We're sorry about the hassle.

1 solution

x = 2 19 3 cos ( 1 3 arccos ( 7 2 19 ) ) 1 3 x=\dfrac{2\sqrt{19}}{3} \cos \left(\dfrac{1}{3} \arccos \left(\dfrac{7}{2\sqrt{19}} \right) \right) - \dfrac{1}{3}

3 x + 1 = 2 19 cos ( 1 3 arccos ( 7 2 19 ) ) 3x+1=2\sqrt{19}\cos \left(\dfrac{1}{3} \arccos \left(\dfrac{7}{2\sqrt{19}} \right) \right)

Cube both sides and use the identity 4 cos 3 θ = 3 cos θ + cos 3 θ 4\cos^3 \theta=3\cos\theta+\cos3\theta :

27 x 3 + 27 x 2 + 9 x + 1 = 152 19 cos 3 ( 1 3 arccos ( 7 2 19 ) ) 27x^3+27x^2+9x+1=152\sqrt{19}\cos^3 \left(\dfrac{1}{3} \arccos \left(\dfrac{7}{2\sqrt{19}} \right) \right)

27 x 3 + 27 x 2 + 9 x + 1 = 38 19 ( 3 cos ( 1 3 arccos ( 7 2 19 ) ) + 7 2 19 ) 27x^3+27x^2+9x+1=38\sqrt{19}\left(3\cos \left(\dfrac{1}{3} \arccos \left(\dfrac{7}{2\sqrt{19}} \right) \right)+\dfrac{7}{2\sqrt{19}}\right)

27 x 3 + 27 x 2 + 9 x + 1 = 38 19 ( 3 ( 3 x + 1 2 19 ) + 7 2 19 ) 27x^3+27x^2+9x+1=38\sqrt{19}\left(3\left(\dfrac{3x+1}{2\sqrt{19}}\right)+\dfrac{7}{2\sqrt{19}}\right)

Expand and simplify:

x 3 + x 2 6 x 7 = 0 x^3+x^2-6x-7=0

Let w = e 2 π i / 19 w=e^{2\pi i/19} be a 19th primitive root of unity. We claim that the roots of the equation above are x 1 = w + w 18 + w 7 + w 12 + w 8 + w 11 x_1=w+w^{18}+w^7+w^{12}+w^8+w^{11} , x 2 = w 2 + w 17 + w 3 + w 16 + w 5 + w 14 x_2=w^2+w^{17}+w^3+w^{16}+w^5+w^{14} and x 3 = w 4 + w 15 + w 6 + w 13 + w 9 + w 10 x_3=w^4+w^{15}+w^6+w^{13}+w^9+w^{10} . Let's prove it (after expanding very messy products):

x 1 + x 2 + x 3 = w + w 2 + w 3 + + w 18 = 1 x_1+x_2+x_3=w+w^2+w^3+\cdots+w^{18}=-1

x 1 x 2 + x 1 x 3 + x 2 x 3 = 6 ( w + w 2 + w 3 + + w 18 ) = 6 x_1x_2+x_1x_3+x_2x_3=6(w+w^2+w^3+\cdots+w^{18})=-6

x 1 x 2 x 3 = 11 ( w + w 2 + w 3 + + w 18 ) + 18 = 7 x_1x_2x_3=11(w+w^2+w^3+\cdots+w^{18})+18=7

By Vieta's formulas, the polynomial with roots x 1 , x 2 x_1,x_2 and x 3 x_3 is P ( x ) = x 3 ( x 1 + x 2 + x 3 ) x 2 + ( x 1 x 2 + x 1 x 3 + x 2 x 3 ) x x 1 x 2 x 3 = x 3 + x 2 6 x 7 P(x)=x^3-(x_1+x_2+x_3)x^2+(x_1x_2+x_1x_3+x_2x_3)x-x_1x_2x_3=x^3+x^2-6x-7 . Hence proved.

Now, prove yourself that the correct value of x x is x 2 x_2 .

Then x = 2 ( cos ( 4 π 19 ) + cos ( 6 π 19 ) + cos ( 10 π 19 ) ) x=2\left(\cos\left(\dfrac{4\pi}{19}\right)+\cos\left(\dfrac{6\pi}{19}\right)+\cos\left(\dfrac{10\pi}{19}\right)\right)

We get a = 2 , b = 4 , c = 6 , d = 10 , e = 19 a=2,b=4,c=6,d=10,e=19 and a + b + c + d + e = 41 a+b+c+d+e=\boxed{41} .

Simple awesome , btw can u tell me how you took x 1 , x 2 , x 3 x_1,x_2,x_3 , I mean to say why x 1 x_1 included w w not w 2 w^2 . Plz elaborate.

Seong Ro - 5 years, 5 months ago

Log in to reply

It has to do a lot with Galois Theory, which is still very complicated for me, I am still learning. I found these values by trial and error.

Alan Enrique Ontiveros Salazar - 5 years, 5 months ago

0 pending reports

×

Problem Loading...

Note Loading...

Set Loading...