Waiting for 2016 - 2

Geometry Level 5

4 7 3 cos ( 1 3 arccos ( 1 28 ) ) + 1 3 \large \dfrac{4\sqrt{7}}{3} \cos \left(\dfrac{1}{3} \arccos \left(\dfrac{1}{\sqrt{28}} \right) \right) + \dfrac{1}{3}

The expression above can be simplified into the form

a ( cos ( b π e ) + cos ( c π e ) + cos ( d π e ) ) \large a \left(\cos \left(\dfrac{b \pi}{e} \right) +\cos \left(\dfrac{c \pi}{e} \right)+\cos \left(\dfrac{d \pi}{e} \right) \right)

where a , b , c , d a,b,c,d and e e are positive integers with gcd ( b , e ) = gcd ( c , e ) = gcd ( d , e ) = 1 \gcd(b,e) = \gcd(c,e) = \gcd(d,e) = 1 .

If all the angles mentioned above lie in the interval [ 0 , π ] [ 0, \pi ] , find the value of a + b + c + d + e a+b+c+d+e ..


The answer is 15.

This section requires Javascript.
You are seeing this because something didn't load right. We suggest you, (a) try refreshing the page, (b) enabling javascript if it is disabled on your browser and, finally, (c) loading the non-javascript version of this page . We're sorry about the hassle.

1 solution

x = 4 7 3 cos ( 1 3 arccos ( 1 2 7 ) ) + 1 3 x=\dfrac{4\sqrt{7}}{3} \cos \left(\dfrac{1}{3} \arccos \left(\dfrac{1}{2\sqrt{7}} \right) \right) + \dfrac{1}{3}

3 x 1 = 4 7 cos ( 1 3 arccos ( 1 2 7 ) ) 3x-1=4\sqrt{7}\cos \left(\dfrac{1}{3} \arccos \left(\dfrac{1}{2\sqrt{7}} \right) \right)

Cube both sides and use the identity 4 cos 3 θ = 3 cos θ + cos 3 θ 4\cos^3 \theta=3\cos\theta+\cos3\theta :

27 x 3 27 x 2 + 9 x 1 = 448 7 cos 3 ( 1 3 arccos ( 1 2 7 ) ) 27x^3-27x^2+9x-1=448\sqrt{7}\cos^3 \left(\dfrac{1}{3} \arccos \left(\dfrac{1}{2\sqrt{7}} \right) \right)

27 x 3 27 x 2 + 9 x 1 = 112 7 ( 3 cos ( 1 3 arccos ( 1 2 7 ) ) + 1 2 7 ) 27x^3-27x^2+9x-1=112\sqrt{7}\left(3\cos \left(\dfrac{1}{3} \arccos \left(\dfrac{1}{2\sqrt{7}} \right) \right)+\dfrac{1}{2\sqrt{7}}\right)

27 x 3 27 x 2 + 9 x 1 = 112 7 ( 3 ( 3 x 1 4 7 ) + 1 2 7 ) 27x^3-27x^2+9x-1=112\sqrt{7}\left(3\left(\dfrac{3x-1}{4\sqrt{7}}\right)+\dfrac{1}{2\sqrt{7}}\right)

Expand and simplify:

x 3 x 2 9 x + 1 = 0 x^3-x^2-9x+1=0

Now let x = 2 y + 1 x=2y+1 :

( 2 y + 1 ) 3 ( 2 y + 1 ) 2 9 ( 2 y + 1 ) + 1 = 0 (2y+1)^3-(2y+1)^2-9(2y+1)+1=0

Expand and simplify:

y 3 + y 2 2 y 1 = 0 y^3+y^2-2y-1=0

It's a well known fact that that equation has roots y k = 2 cos ( 2 π k 7 ) y_k=2\cos\left(\dfrac{2\pi k}{7}\right) for k = { 1 , 2 , 3 } k=\{1,2,3\} . So the roots of the first equation are x k = 4 cos ( 2 π k 7 ) + 1 x_k=4\cos\left(\dfrac{2\pi k}{7}\right)+1 . Prove yourself that the value we are looking for is when k = 1 k=1 . So x = 4 cos ( 2 π 7 ) + 1 x=4\cos\left(\dfrac{2\pi}{7}\right)+1 .

But 1 = 2 ( cos ( 2 π 7 ) + cos ( 4 π 7 ) + cos ( 6 π 7 ) ) 1=-2\left(\cos\left(\dfrac{2\pi}{7}\right)+\cos\left(\dfrac{4\pi}{7}\right)+\cos\left(\dfrac{6\pi}{7}\right)\right) , so x = 2 ( cos ( 2 π 7 ) cos ( 4 π 7 ) cos ( 6 π 7 ) ) x=2\left(\cos\left(\dfrac{2\pi}{7}\right)-\cos\left(\dfrac{4\pi}{7}\right)-\cos\left(\dfrac{6\pi}{7}\right)\right) . Using cos θ = cos ( π θ ) -\cos\theta=\cos(\pi-\theta) we get finally:

x = 2 ( cos ( π 7 ) + cos ( 2 π 7 ) + cos ( 3 π 7 ) ) x=2\left(\cos\left(\dfrac{\pi}{7}\right)+\cos\left(\dfrac{2\pi}{7}\right)+\cos\left(\dfrac{3\pi}{7}\right)\right)

Hence a = 2 , b = 1 , c = 2 , d = 3 , e = 7 a=2,b=1,c=2,d=3,e=7 and a + b + c + d + e = 15 a+b+c+d+e=\boxed{15} .

What motivated you to choose y in the way you've done above?

Deeparaj Bhat - 5 years, 3 months ago

Log in to reply

The part where I obtain the cube was inspired by the trigonometric form of Cardano's method. And the part where I made the substitution was motivaded to obtain somehow the polynomial y 3 + y 2 2 y 1 y^3+y^2-2y-1 which is well known to have the above roots.

Alan Enrique Ontiveros Salazar - 5 years, 3 months ago

0 pending reports

×

Problem Loading...

Note Loading...

Set Loading...