Waiting for 2016!

2016 2016 2016 2016 2016 \LARGE {\color{#3D99F6}{2016}}^{{\color{#20A900}{2016}}^{{\color{#D61F06}{2016}}^{{\color{#624F41}{2016}}^{\color{magenta}{2016}}}}}

Find the last two digits of the number above.

56 26 76 36 96 16

This section requires Javascript.
You are seeing this because something didn't load right. We suggest you, (a) try refreshing the page, (b) enabling javascript if it is disabled on your browser and, finally, (c) loading the non-javascript version of this page . We're sorry about the hassle.

1 solution

Mas Mus
Apr 22, 2015

Let N = 2016 2016 2016 2016 2016 N=\large {\color{#3D99F6}{2016}^{\color{#20A900}{2016}^{\color{#D61F06}{2016}^{\color{#624F41}{2016}^\color{magenta}{2016}}}}} .

Finding the last two digits of a number is equivalent to determining the remind of a number modulo 100 100 . Since gcd ( 2016 , 100 ) 1 \gcd\left(2016,100\right)\neq1 , we can't use Euler's theorem directly. Instead, we need to determine the remind of N N modulo 4 4 and modulo 25 25 .

Due to 2016 2016 is a multiple of 4 4 , according to the rules of modular arithmetic, hence 2016 n 0 ( m o d 4 ) for n 1 {2016}^{n}\equiv0\pmod{4}\text{ for }n\geq1 . Furthermore, we will find the residue of N N modulo 25 25 . Note that gcd ( 2016 , 25 ) = 1 \gcd\left(2016, 25\right)=1 , so, we can use Euler's theorem. To avoid confusion, we will use the original question.

2016 2016 0 ( m o d 4 ) 2016 2016 2016 2016 0 1 ( m o d 8 ) 2016 2016 2016 2016 2016 1 16 ( m o d 20 ) 2016 2016 2016 2016 2016 2016 16 16 16 256 8 6 8 1296 2 ( 4 ) 2 16 ( m o d 25 ) \begin{aligned}\large{\color{#624F41}{2016}^\color{magenta}{2016}}&\equiv0\pmod{4}\\ \large{\color{#D61F06}{2016}^{\color{#624F41}{2016}^\color{magenta}{2016}}}&\equiv\color{#D61F06}{2016}^{0}\equiv1\pmod{8}\\ \large{\color{#20A900}{2016}^{\color{#D61F06}{2016}^{\color{#624F41}{2016}^\color{magenta}{2016}}}}&\equiv\color{#20A900}{2016}^{1}\equiv16\pmod{20}\\ \large {\color{#3D99F6}{2016}^{\color{#20A900}{2016}^{\color{#D61F06}{2016}^{\color{#624F41}{2016}^\color{magenta}{2016}}}}}&\equiv\color{#3D99F6}{2016}^{16}\equiv{16}^{16}\equiv{256}^{8}\equiv{6}^{8}\equiv{1296}^2\equiv{\left(-4\right)^2}\equiv16\pmod{25}\end{aligned}

Now, we have: 2016 2016 2016 2016 2016 { 0 ( m o d 4 ) 16 ( m o d 25 ) \large {\color{#3D99F6}{2016}^{\color{#20A900}{2016}^{\color{#D61F06}{2016}^{\color{#624F41}{2016}^\color{magenta}{2016}}}}}\equiv\begin{cases}0\pmod{4}\\16\pmod{25}\end{cases}

Using Chinese Remainder theorem, we will get 2016 2016 2016 2016 2016 16 ( m o d 100 ) \large {\color{#3D99F6}{2016}^{\color{#20A900}{2016}^{\color{#D61F06}{2016}^{\color{#624F41}{2016}^\color{magenta}{2016}}}}}\equiv16\pmod{100}

Could you please explain the last part, with the Chinese remainder theorem? Are there any nice rules about multiplication with the mod N? Seems like people often factor it in order to use Eulers theorem, so it would be nice with an explanation or link to an explanation.

Cheers

Adam Pet - 6 years, 1 month ago

Log in to reply

You can read this or this . But, sometime, I prefer to use the second one. For the case above, N 0 ( m o d 4 ) N\equiv0\pmod{4} or N = 4 u N=4u and N 16 ( m o d 25 ) N\equiv16\pmod{25} .

4 u 16 ( m o d 25 ) u 4 ( m o d 25 ) or u = 25 v + 4 4u\equiv16\pmod{25}\\u\equiv4\pmod{25}~\text{or}~~u=25v+4 .

After subtituting u = 25 v + 4 u=25v+4 , we have N = 100 v + 16 N=100v+16 , it's mean N 16 ( m o d 100 ) N\equiv16\pmod{100} .

By the way, on your example, 166 is not congruent to 0 0 mod 4 4 .

Mas Mus - 6 years, 1 month ago

Log in to reply

Thank you, mate!

Made an edit.

Adam Pet - 6 years, 1 month ago

0 pending reports

×

Problem Loading...

Note Loading...

Set Loading...