Wake Up, Neo

Algebra Level 3

The square matrix A A of order 40 40 has its entries defined as the product of their column position and their line position, that is, a m n = m × n a_{mn} = m \times n .

Let S S be the sum of all its entries. Evaluate S \sqrt{S} .


The answer is 820.

This section requires Javascript.
You are seeing this because something didn't load right. We suggest you, (a) try refreshing the page, (b) enabling javascript if it is disabled on your browser and, finally, (c) loading the non-javascript version of this page . We're sorry about the hassle.

11 solutions

Let the sum of all entries of a likely matrix of order k k be S ( k ) S(k) .

The matrix will look like this:

( 1 2 k 2 4 2 k k 2 k k 2 ) \begin{pmatrix} 1 & 2 & \cdots &k \\ 2 & 4 & \cdots & 2k\\ \vdots & \vdots & \ddots & \vdots \\ k & 2k & \cdots & k^2 \end{pmatrix}

Notice the first column has sum = ( 1 + 2 + + k ) = (1+2+\cdots+k) . The second one has sum = 2 × ( 1 + 2 + + k ) = 2 \times (1+2+\cdots+k) , the third one has sum = 3 × ( 1 + 2 + + k ) = 3 \times (1+2+\cdots+k) , and the k k -th column has sum = k × ( 1 + 2 + + k ) = k \times (1+2+\cdots+k) .

Adding all up, we get ( 1 + 2 + + k ) ( 1 + 2 + + k ) ( 1 + 2 + + k ) 2 (1+2+\cdots+k)(1+2+\cdots+k) \Rightarrow (1+2+\cdots+k)^2 . Note this is the square of the sum of the first k k integers, whose closed formula is k ( k + 1 ) 2 \frac{k(k+1)}{2} . Jumping some steps, we see the problem asks us not S ( 40 ) S(40) , but its square root. That means the answer to this problem is 40 41 2 = 820. \frac{40 \cdot 41}{2} \Rightarrow = \boxed{820.} .

Nice LaTeX matrix :)

Carl Denton - 7 years, 5 months ago

Log in to reply

I use CodeCogs to visualize better my answer. You should check it out too :)

Guilherme Dela Corte - 7 years, 5 months ago

square matrix means row and column number r same ,so here row=column

and order of matrix is called row column=row row=column*column ,here order=40,but root of 40 is not an integer,then how come???

Log in to reply

Hello,

Please notice we want to calculate the square root of "the sum of all its entries". It is slighty related to the order of the matrix, but not linear.

order N ( all entries ) = N 2 ( N + 1 ) 2 4 \displaystyle \sum ^{\text{order N}}(\text{all entries }) = \dfrac{N^2 (N+1)^2}{4}

Guilherme Dela Corte - 7 years, 4 months ago
Romeo Gomez
Dec 22, 2013

By the definition of the entries of the matrix we have for example a 1 m = 1 , 2 , 3 , 4 , , 40 , a_{1m}=1,2,3,4,\dots,40, so the sum of the first row with all the colums is n = 1 40 n . \sum_{n=1}^{40}{n}. in the second row with all the columns we have 2 n = 1 40 n . 2\sum_{n=1}^{40}{n}. And we can do this for every row k with all the columns, the sum is k n = 1 40 n . k\sum_{n=1}^{40}{n}. hence we have that the sum of all the entries of the matrix is S = n = 1 40 n + 2 n = 1 40 n + + 40 n = 1 40 n = n = 1 40 n × ( 1 + 2 + + 40 ) = n = 1 40 n × n = 1 40 n . S=\sum_{n=1}^{40}{n} + 2\sum_{n=1}^{40}{n}+ \dots + 40\sum_{n=1}^{40}{n}=\sum_{n=1}^{40}{n}\times (1+2+\dots + 40)=\sum_{n=1}^{40}{n}\times \sum_{n=1}^{40}{n}. so S = 4 0 2 × 4 1 2 2 2 S=\frac{40^{2}\times 41^{2}}{2^{2}} then S = 40 × 41 2 = 820 \sqrt{S}=\frac{40 \times 41}{2}=820

Ajay Maity
Dec 22, 2013

The matrix looks like this:

1 × 1 1 \times 1 , 1 × 2 1 \times 2 , 1 × 3 1 \times 3 , ........, 1 × 40 1 \times 40

2 × 1 2 \times 1 , 2 × 2 2 \times 2 , 2 × 3 2 \times 3 , ........, 2 × 40 2 \times 40

3 × 1 3 \times 1 , 3 × 2 3 \times 2 , 3 × 3 3 \times 3 , ........, 3 × 40 3 \times 40

.

.

.

.

40 × 1 40 \times 1 , 40 × 2 40 \times 2 , 40 × 3 40 \times 3 , ........, 40 × 40 40 \times 40

So, their addition

S = ( 1 × 1 ) + ( 1 × 2 ) + ( 1 × 3 ) + . . . . . + ( 1 × 40 ) + ( 2 × 1 ) + ( 2 × 2 ) + ( 2 × 3 ) + . . . . . + ( 2 × 40 ) + ( 3 × 1 ) + ( 3 × 2 ) + ( 3 × 3 ) + . . . . . + ( 3 × 40 ) + . . . . . + ( 40 × 1 ) + ( 40 × 2 ) + ( 40 × 3 ) + . . . . . + ( 40 × 40 ) S = (1 \times 1) + (1 \times 2) + (1 \times 3) + ..... + (1 \times 40) + (2 \times 1) + (2 \times 2) + (2 \times 3) + ..... + (2 \times 40) + (3 \times 1) + (3 \times 2) + (3 \times 3) + ..... + (3 \times 40) + ..... + (40 \times 1) + (40 \times 2) + (40 \times 3) + ..... + (40 \times 40)

S = 1 × ( 1 + 2 + 3 + . . . . . + 40 ) + 2 × ( 1 + 2 + 3 + . . . . . + 40 ) + 3 × ( 1 + 2 + 3 + . . . . . + 40 ) + . . . . . + 40 × ( 1 + 2 + 3 + . . . . . + 40 ) S = 1 \times (1 + 2 + 3 + ..... + 40) + 2 \times (1 + 2 + 3 + ..... + 40) + 3 \times (1 + 2 + 3 + ..... + 40) + ..... + 40 \times (1 + 2 + 3 + ..... + 40)

S = ( 1 + 2 + 3 + . . . . . + 40 ) × ( 1 + 2 + 3 + . . . . . + 40 ) S = (1 + 2 + 3 + ..... + 40) \times (1 + 2 + 3 + ..... + 40)

S = ( 1 + 2 + 3 + . . . . . + 40 ) \sqrt{S} = (1 + 2 + 3 + ..... + 40)

= 40 × 41 2 = \frac{40 \times 41}{2}

= 820 = \boxed{820}

That's the answer!

Use CodeCogs to build a matrix. It will look very good :)

Guilherme Dela Corte - 7 years, 5 months ago

Log in to reply

Ok, cool. Thanks!

Ajay Maity - 7 years, 5 months ago
Davin Leo
Dec 21, 2013

Let's count the sum of every line
Line 1 \rightarrow L 1 = 1 × 1 + 1 × 2 + 1 × 3 + + 1 × 40 L_1=1\times1+1\times2+1\times3+\cdots+1\times40
L 1 = 1 ( 1 + 2 + 3 + + 40 ) L_1=1(1+2+3+\cdots+40)
Line 2 \rightarrow L 2 = 2 × 1 + 2 × 2 + 2 × 3 + + 2 × 40 L_2=2\times1+2\times2+2\times3+\cdots+2\times40
L 2 = 2 ( 1 + 2 + 3 + + 40 ) L_2=2(1+2+3+\cdots+40)
Line 3 \rightarrow L 3 = 3 × 1 + 3 × 2 + 3 × 3 + + 3 × 40 L_3=3\times1+3\times2+3\times3+\cdots+3\times40
L 3 = 3 ( 1 + 2 + 3 + + 40 ) L_3=3(1+2+3+\cdots+40)
\vdots \rightarrow \vdots
Line 40 \rightarrow L 40 = 40 × 1 + 40 × 2 + 40 × 3 + + 40 × 40 L_{40}=40\times1+40\times2+40\times3+\cdots+40\times40
L 40 = 40 ( 1 + 2 + 3 + + 40 ) L_{40}=40(1+2+3+\cdots+40)





Assuming that a = 1 + 2 + 3 + + 40 a=1+2+3+\cdots+40
L 1 = 1 a L_1=1a
L 2 = 2 a L_2=2a
L 3 = 3 a L_3=3a
\vdots
L 40 = 40 a L_{40}=40a

To get the sum of all its entries ( S ) (S) we need to sum up L 1 L_1 until L 40 L_{40}
S = L 1 + L 2 + L 3 + + L 40 S=L_1+L_2+L_3+\cdots+L_{40}
S = 1 a + 2 a + 3 a + + 40 a S=1a+2a+3a+\cdots+40a
S = ( 1 + 2 + 3 + + 40 ) a S=(1+2+3+\cdots+40)a
S = ( a ) a S=(a)a
S = a 2 S=a^2
S = a \sqrt{S}=a
S = 1 + 2 + 3 + + 40 \sqrt{S}=1+2+3+\cdots+40
Note : 1 + 2 + 3 + + n = n ( n + 1 ) 2 1+2+3+\cdots+n=\frac {n(n+1)} {2}
S = 40 ( 41 ) 2 \sqrt{S}=\frac {40(41)} {2}
S = 821 \sqrt{S}=\boxed{821}

Sorry for the mistyped answer. The true answer is 820 :)

Davin Leo - 7 years, 5 months ago
Carl Denton
Dec 22, 2013

We note that in order to have every combination of m × n m \times n , we must only write S = ( m 1 + m 2 + . . . + m m ) ( n 1 + n 2 + . . . + n n ) S = (m_1 + m_2 +...+ m_m)(n_1+n_2+...+n_n) . This then simplifies to ( 1 + 2 + . . . + 40 ) 2 (1+2+...+40)^2 . By the formula for an arithmetic series, we know that the sum in the parentheses is S = ( 1 + 40 ) 40 2 = 41 × 20 = 820 \sqrt S = (1+40)*\frac{40}{2}=41 \times 20 =820 .

Firstly, we have to notice that we have to find the square-root of sum of each entry in the square matrix of order 40 , which can't be found in a quick manner by normal formulae.

Of course, one could painstakingly write down all the entries, sum them and then take the square-root. But let me shorten the process by a day.

Notice :

First Row = 1 × ( 1 + 2 + 3 + 4 + . . . 40 ) 1\times (1+2+3+4+...40)

Second Row = 2 × ( 1 + 2 + 3 + 4 + . . . 40 ) 2\times(1+2+3+4+...40)

        .


        .


        .


        .

Fortieth Row = 40 × ( 1 + 2 + 3 + 4 + . . . 40 ) 40\times(1+2+3+4+...40)

Adding all the rows yields :

S = 1 × ( 1 + 2 + 3 + 4 + . . . 40 ) + 2 × ( 1 + 2 + 3 + 4 + . . . 40 ) . . . . + 40 × ( 1 + 2 + 3 + 4 + . . . 40 ) 1\times (1+2+3+4+...40) + 2\times (1+2+3+4+...40) .... + 40\times (1+2+3+4+...40)

Factoring out the (1+2+3+4+...40) from each term yields :

S = ( 1 + 2 + 3 + 4 + . . . 40 ) × ( 1 + 2 + 3 + 4 + . . . 40 ) (1+2+3+4+...40)\times (1+2+3+4+...40) = ( 1 + 2 + 3 + 4 + . . . . 40 ) 2 (1+2+3+4+....40)^{2}

Hence * S \sqrt{S} * = (1+2+3+4+....40)

Using the formula for sum of N natural numbers we get :

* S \sqrt{S} * = * ( 40 ) ( 41 ) ( 2 ) \frac{(40)(41)}{(2)} * = * 820 \boxed{820} *

Arjun S Xetry
Dec 22, 2013

Since a m n = m × n a_{mn}=m\times n , the first row shall consists of elements 1 , 2 , 3....40 1,2,3....40 . Similarly the second row shall consists of elements of the form 2 × 1 , 2 × 2 , . . . . 2 × 40 2\times 1,2\times 2,....2\times 40 . Thus the n t h n^{th} row shall contain elements of the form n × 1 , n × 2 , . . . . n × 40 n\times 1,n\times 2,....n\times 40 . Hence S = ( 1 + 2 + 3 + . . . . + 40 ) + 2 × ( 1 + 2 + 3 + . . . . . + 40 ) + . . . . + n ( 1 + 2 + 3 + . . . . + 40 ) + . . . . + 40 ( 1 + 2 + 3 + . . . . . + 40 ) S=(1+2+3+....+40)+2\times (1+2+3+.....+40)+....+n(1+2+3+....+40)+....+40(1+2+3+.....+40) S = ( 1 + 2 + 3 + . . . . + 40 ) ( 1 + 2 + 3 + . . . . . + 40 ) = 2 0 2 × 4 1 2 S=(1+2+3+....+40)(1+2+3+.....+40)=20^2\times 41^2 S = 41 × 20 = 820. \therefore \sqrt S=41\times 20=820.

The solution is as follows first of all consider an entire row .Since the entire row has it's row number i.e, the number being multiplied in common. we just take it out sum up the remaining numbers which is obviously the sum of first 40 natural numbers as provided SUM OF THAT ROW BEING CONSIDERED=rn*(40x41)/2 (rn represents that row number) repeat same procedure for all rows you then sum up all the rn's you get square of 40x41/2=S^2 which implies S=40x41/2=820

use LaTex please.

DreamRunner Moshi - 7 years, 5 months ago

Log in to reply

Thank you for your valuable suggestion

KOLAR RAKESH SINGH - 7 years, 5 months ago
Sandeep Sharma
Jan 16, 2014

Am,n=m n...i.e..,A1,1=1 1=1,A1,2=1 2......A1,40=1 40=40 for 1st row sum=1+2+...+40=820 similarly for A2,1=2 1=2,A2,2=2 2...A2,40=2 40....sum=2(1+2+..+40)=2(820) soon for A40,1=40 1.....A40,40=40 40......sum=40(1+2+...+40)=40(820) there fore,total sum, s=1(820)+2(820)+...+40(820) s=820(1+2+...+40) s=820 820 s^1/2=820

Sasank Jammi
Jan 8, 2014

s={n(n+1)/2}*{n(n+1)/2} where n=40 since it is a square matrix the rows wil be like 1.1,1.2........1.40 same wit columns

How exactly did you find out Σ = n 2 ( n + 1 ) 2 4 \Sigma = \frac{n^2 (n+1)^2}{4} ? Can you explain why this is true for all natural values of N 1 N \geq 1 ?

Guilherme Dela Corte - 7 years, 4 months ago
Tryin' Thisout
Dec 23, 2013

[ 1 2 3 4 40 2 4 6 8 80 40 80 120 160 1600 ] R 1 R 2 = 2 R 1 R 40 = 40 R 1 \left[ \begin{array}{c} 1 & 2 & 3 & 4 &\cdots & 40 \\ 2 & 4 & 6 & 8 & \cdots & 80 \\ \vdots & & & \ddots & & \vdots \\ 40 & 80 & 120 & 160 & \cdots & 1600 \end{array}\right] \begin{array}{l} R1 \\ R2 = 2R1 \\ \vdots \\ R40 = 40R1 \end{array} For finding the sum of all the entries in R1 we can define little s as the sum of the simple arithmetic sequence s = 1 + 2 + 3 + . . . . 40 = n = 1 40 n s=1+2+3+....40 = \sum_{n=1}^{40} n n = 1 40 n = 40 2 ( 1 + 40 ) = 820 \sum_{n=1}^{40} n = \frac{40}{2}(1+40) = 820 You also know that R 2 = 2 R 1 R2 = 2R1 therefor the sum of Row 2 is just 2s, the sum of Row 3 is 3s, etc. Using the formula for the sum of an arithmetic sequence again, you find that the sum of all rows, S, is S = s + 2 s + 3 s + . . . . 40 s = s ( 1 + 2 + 3 + . . . . + 40 ) = s n = 1 40 n S=s+2s+3s+....40s =s(1+2+3+....+40)= s\sum_{n=1}^{40} n S = s 40 2 ( 1 + 40 ) = s ( 820 ) = 82 0 2 S=s\frac{40}{2}(1+40) = s(820) = 820^2 Then S = 82 0 2 = 820 \sqrt{S} = \sqrt{820^2} = 820

0 pending reports

×

Problem Loading...

Note Loading...

Set Loading...