Want to play with angles?

Geometry Level 3

In Δ A B C \Delta ABC , let D D be the mid point of B C BC . If A D B = 4 5 \angle ADB = 45^\circ and A C D = 3 0 \angle ACD=30^\circ , determine measure of B A D \angle BAD in degrees.


The answer is 30.

This section requires Javascript.
You are seeing this because something didn't load right. We suggest you, (a) try refreshing the page, (b) enabling javascript if it is disabled on your browser and, finally, (c) loading the non-javascript version of this page . We're sorry about the hassle.

2 solutions

Anish Gupta
Jun 27, 2015

Draw BL perpendicular to AC and join L to D . Since angle BCL=30°, we get angle CBL=60°. Since BLC is a right triangle with angle BCL = 30° , we have BL=BC/2=BD. Thus in ∆ BLD , we observe that BL = BD and angle DBL=60°. This implies that BLD is an equilateral ∆ hence LB=LD. Using angle LDB =60° and angle ADB= 45°, we get angle ADL=15°. But angle DAL=15°.Thus LD=LA. We hence have LD=LA=LB. This implies that L is the circumcentre of the ∆. Thus, angle BAD=1/2 angle BLD =1/2*60°=30°.

mera ho gya :p xD

Harmanjot Singh - 5 years, 11 months ago

L e t B A D = α . S o A B D = 135 α . I n Δ C A D i n t e r n a l D C A = 45 15 = 30. A p p l y i n g S i n e L a w t o Δ s A D C a n d A D B , A D S i n 30 = D C S i n 15 = B D S i n 15 . . . . . a n d . . . . A D S i n 135 α = B D S i n α B u t A D = B D S i n 30 S i n 15 , . . . S o . . . B D S i n 30 S i n 15 S i n ( 135 α ) = B D S i n α S i m p l i f y i n g , S i n 30 S i n 15 = S i n ( 135 α ) S i n α = S i n 135 C o t α C o s 135. S i n 135 C o t α = S i n 30 S i n 15 + C o s 135. S i n c e S i n 2 A = 2 S i n A C o s A . 1 T a n α = 2 2 C o s 15 1 α = B A D = 3 0 o . Let~ \angle~ BAD=\alpha . ~So~\angle~ABD=135-\alpha.\\ In~\Delta~CAD~internal~ \angle~DCA~=45-15=30. \\ Applying ~Sine~ Law~ to~ \Delta s~~ ADC~and~ADB,\\ \dfrac{AD}{Sin30}=\dfrac{DC}{Sin15}=\dfrac{BD}{Sin15}.....and....\dfrac{AD}{Sin135-\alpha}=\dfrac{BD}{Sin\alpha}\\ But~AD=\dfrac{BDSin30}{Sin15},...So...\dfrac{BDSin30}{Sin15*Sin(135-\alpha)}=\dfrac{BD}{Sin\alpha}\\ Simplifying,~\dfrac{Sin30}{Sin15}=\dfrac{Sin(135-\alpha)}{Sin \alpha}=Sin135*Cot \alpha-Cos 135. \\ Sin135*Cot \alpha=\dfrac{Sin30}{Sin15}+Cos135. \\ Since~Sin2A=2*SinA*CosA.\\ \therefore~ \dfrac 1{Tan \alpha}=\sqrt2*2*Cos15-1\\ \therefore~\alpha=\angle BAD =30^o.

0 pending reports

×

Problem Loading...

Note Loading...

Set Loading...