In Δ A B C , let D be the mid point of B C . If ∠ A D B = 4 5 ∘ and ∠ A C D = 3 0 ∘ , determine measure of ∠ B A D in degrees.
This section requires Javascript.
You are seeing this because something didn't load right. We suggest you, (a) try
refreshing the page, (b) enabling javascript if it is disabled on your browser and,
finally, (c)
loading the
non-javascript version of this page
. We're sorry about the hassle.
mera ho gya :p xD
L e t ∠ B A D = α . S o ∠ A B D = 1 3 5 − α . I n Δ C A D i n t e r n a l ∠ D C A = 4 5 − 1 5 = 3 0 . A p p l y i n g S i n e L a w t o Δ s A D C a n d A D B , S i n 3 0 A D = S i n 1 5 D C = S i n 1 5 B D . . . . . a n d . . . . S i n 1 3 5 − α A D = S i n α B D B u t A D = S i n 1 5 B D S i n 3 0 , . . . S o . . . S i n 1 5 ∗ S i n ( 1 3 5 − α ) B D S i n 3 0 = S i n α B D S i m p l i f y i n g , S i n 1 5 S i n 3 0 = S i n α S i n ( 1 3 5 − α ) = S i n 1 3 5 ∗ C o t α − C o s 1 3 5 . S i n 1 3 5 ∗ C o t α = S i n 1 5 S i n 3 0 + C o s 1 3 5 . S i n c e S i n 2 A = 2 ∗ S i n A ∗ C o s A . ∴ T a n α 1 = 2 ∗ 2 ∗ C o s 1 5 − 1 ∴ α = ∠ B A D = 3 0 o .
Problem Loading...
Note Loading...
Set Loading...
Draw BL perpendicular to AC and join L to D . Since angle BCL=30°, we get angle CBL=60°. Since BLC is a right triangle with angle BCL = 30° , we have BL=BC/2=BD. Thus in ∆ BLD , we observe that BL = BD and angle DBL=60°. This implies that BLD is an equilateral ∆ hence LB=LD. Using angle LDB =60° and angle ADB= 45°, we get angle ADL=15°. But angle DAL=15°.Thus LD=LA. We hence have LD=LA=LB. This implies that L is the circumcentre of the ∆. Thus, angle BAD=1/2 angle BLD =1/2*60°=30°.