Warming up summation

Calculus Level 5

n = 1 k = n + 1 H n k 6 = π A B ( ζ ( C ) ) 2 D ζ ( E ) \large \sum _{ n=1 }^{ \infty }{ \sum _{ k=n+1 }^{ \infty }{ \dfrac { { H }_{ n } }{ { k }^{ 6 } } } } =\dfrac { { \pi }^{ A } }{ B } -\dfrac { ({ \zeta }( C ))^2 }{ D } -\zeta ( E )

The above equation holds true for positive integers A A , B B , C C , D D , and E E with C C and E E are odd numbers .

Find A + B + C + D + E A+B+C+D+E .

Notations :

  • H n H_n denotes the n th n^\text{th} harmonic number , H n = 1 + 1 2 + 1 3 + + 1 n H_n = 1 + \dfrac12 + \dfrac13 + \cdots + \dfrac1n .

  • ζ ( ) \zeta(\cdot) denotes the Riemann zeta function .


The answer is 556.

This section requires Javascript.
You are seeing this because something didn't load right. We suggest you, (a) try refreshing the page, (b) enabling javascript if it is disabled on your browser and, finally, (c) loading the non-javascript version of this page . We're sorry about the hassle.

2 solutions

Ishan Singh
Jun 9, 2016

Let S = n = 1 k = n + 1 H n k 6 = n = 1 k = n H n k 6 n = 1 H n n 6 \displaystyle \text{S} = \sum_{n=1}^{\infty} \sum_{k=n+1}^{\infty} \dfrac{H_{n}}{k^6} = \sum_{n=1}^{\infty} \sum_{k=n}^{\infty} \dfrac{H_{n}}{k^6} - \sum_{n=1}^{\infty}\dfrac{H_{n}}{n^6}

Since i = k n j = k i a i , j = j = k n i = j n a i , j \displaystyle \sum_{i=k}^{n} \sum_{j=k}^{i} a_{i,j} = \sum_{j=k}^{n} \sum_{i=j}^{n} a_{i,j} , we have,

S = k = 1 n = 1 k H n k 6 n = 1 H n n 6 \displaystyle \text{S} = \sum_{k=1}^{\infty} \sum_{n=1}^{k} \dfrac{H_{n}}{k^6} - \sum_{n=1}^{\infty} \dfrac{H_{n}}{n^6}

Note that n = 1 k H n = ( k + 1 ) H k k \displaystyle \sum_{n=1}^{k} H_{n} = (k+1)H_{k} - k

S = k = 1 ( k + 1 ) H k k k 6 n = 1 H n n 6 \displaystyle \implies \text{S} = \sum_{k=1}^{\infty} \dfrac{(k+1)H_{k} -k}{k^6} - \sum_{n=1}^{\infty} \dfrac{H_{n}}{n^6}

= k = 1 H k k 5 k = 1 1 k 5 \displaystyle = \sum_{k=1}^{\infty} \dfrac{H_{k}}{k^5} - \sum_{k=1}^{\infty} \dfrac{1}{k^5}

= π 6 540 1 2 ζ ( 3 ) 2 ζ ( 5 ) \displaystyle = \dfrac{\pi^6}{540} - \dfrac{1}{2} \zeta(3)^2 - \zeta(5)

where the last equality follows from Euler's Sum.

Ans. = 556 \implies \text{Ans.} = \boxed{556}

Mark Hennings
Jun 8, 2016

The sum is S = n = 1 k = n + 1 H n k 6 = n = 1 k = n + 1 m = 1 n 1 m k 6 = m = 1 k = m + 1 n = m k 1 1 m k 6 = m = 1 k = m + 1 k m m k 6 = k = 2 m = 1 k 1 ( 1 m k 5 1 k 6 ) = k = 2 H k 1 k 5 k = 2 k 1 k 6 = k = 1 H k ( k + 1 ) 5 ζ ( 5 ) + ζ ( 6 ) = k = 1 ( H k + 1 ( k + 1 ) 5 1 ( k + 1 ) 6 ) ζ ( 5 ) + ζ ( 6 ) = k = 1 H k k 5 ζ ( 5 ) = S 1 , 5 ζ ( 5 ) \begin{array}{rcl} \displaystyle S \; = \; \sum_{n=1}^\infty \sum_{k=n+1}^\infty \frac{H_n}{k^6} & = & \displaystyle \sum_{n=1}^\infty \sum_{k=n+1}^\infty \sum_{m=1}^n \frac{1}{mk^6} \; = \; \sum_{m=1}^\infty \sum_{k=m+1}^\infty \sum_{n=m}^{k-1}\frac{1}{mk^6} \\ & = & \displaystyle \sum_{m=1}^\infty \sum_{k=m+1}^\infty \frac{k-m}{mk^6} \; = \; \sum_{k=2}^\infty \sum_{m=1}^{k-1}\left(\frac{1}{mk^5} - \frac{1}{k^6}\right) \\ & = & \displaystyle \sum_{k=2}^\infty \frac{H_{k-1}}{k^5} - \sum_{k=2}^\infty \frac{k-1}{k^6} \; = \; \sum_{k=1}^\infty \frac{H_k}{(k+1)^5} - \zeta(5) + \zeta(6) \\ & = & \displaystyle \sum_{k=1}^\infty \left(\frac{H_{k+1}}{(k+1)^5} - \frac{1}{(k+1)^6} \right) - \zeta(5) + \zeta(6) \; = \; \sum_{k=1}^\infty \frac{H_k}{k^5} - \zeta(5) \; = \; S_{1,5} - \zeta(5) \end{array} Using Euler's sum S 1 , q = k = 1 H k k q = ( 1 + 1 2 q ) ζ ( q + 1 ) 1 2 k = 1 q 2 ζ ( k + 1 ) ζ ( q k ) S_{1,q} \; = \; \sum_{k=1}^\infty \frac{H_k}{k^q} \; = \; (1 + \tfrac12q)\zeta(q+1) - \tfrac12\sum_{k=1}^{q-2}\zeta(k+1)\zeta(q-k) for any q 2 q \ge 2 , we deduce that S = 7 2 ζ ( 6 ) 1 2 [ ζ ( 2 ) ζ ( 4 ) + ζ ( 3 ) 2 + ζ ( 4 ) ζ ( 2 ) ] ζ ( 5 ) = π 6 540 1 2 ζ ( 3 ) 2 ζ ( 5 ) S \; = \; \tfrac72\zeta(6) - \tfrac12\big[\zeta(2)\zeta(4) + \zeta(3)^2 + \zeta(4)\zeta(2)\big] - \zeta(5) \; = \; \frac{\pi^6}{540} - \tfrac12\zeta(3)^2 - \zeta(5) making the answer 6 + 540 + 3 + 2 + 5 = 556 6 + 540 + 3 + 2 + 5 = \boxed{556} .

Sir I was working on a theorem which I haven't seen anywhere. I have found a general form of a summation. It involves Multiple Zeta Values. I wanted to simplify the zeta values to something simpler. But I couldn't simply or find a source to learn simplification of MZV. Can you help?

Aditya Kumar - 4 years, 11 months ago

0 pending reports

×

Problem Loading...

Note Loading...

Set Loading...