Circuit, circuit, and circuit

Three resistors R 1 R_1 , R 2 R_2 , and R 3 R_3 are arranged into three circuits of different total resistance as shown below:

Find the difference between the highest resistance and the lowest resistance among the three resistors.


The answer is 40.

This section requires Javascript.
You are seeing this because something didn't load right. We suggest you, (a) try refreshing the page, (b) enabling javascript if it is disabled on your browser and, finally, (c) loading the non-javascript version of this page . We're sorry about the hassle.

2 solutions

Chew-Seong Cheong
Apr 20, 2017

From the three circuits, we have:

{ R 1 R 2 + R 3 = R 1 R 2 R 1 + R 2 + R 3 = 40 R 1 R 2 + R 2 R 3 + R 3 R 1 = 40 ( R 1 + R 2 ) . . . ( 1 ) R 3 R 1 + R 2 = R 3 R 1 R 3 + R 1 + R 2 = 45 R 1 R 2 + R 2 R 3 + R 3 R 1 = 45 ( R 3 + R 1 ) . . . ( 2 ) R 2 R 3 + R 1 = R 2 R 3 R 2 + R 3 + R 1 = 72 R 1 R 2 + R 2 R 3 + R 3 R 1 = 72 ( R 2 + R 3 ) . . . ( 3 ) \begin{cases} R_1||R_2 + R_3 = \dfrac {R_1R_2}{R_1+R_2}+R_3 = 40 & \implies {\color{#3D99F6}R_1R_2+R_2R_3+R_3R_1} = 40 (R_1+R_2) & ...(1) \\ R_3||R_1 + R_2 = \dfrac {R_3R_1}{R_3+R_1}+R_2 = 45 & \implies {\color{#3D99F6}R_1R_2+R_2R_3+R_3R_1} = 45 (R_3+R_1) & ...(2) \\ R_2||R_3 + R_1 = \dfrac {R_2R_3}{R_2+R_3}+R_1 = 72 & \implies {\color{#3D99F6}R_1R_2+R_2R_3+R_3R_1} = 72 (R_2+R_3) & ...(3) \end{cases}

40 ( R 1 + R 2 ) = 45 ( R 3 + R 1 ) = 72 ( R 2 + R 3 ) \begin{aligned} \implies 40 (R_1+R_2) & = 45 (R_3+R_1) = 72 (R_2+R_3) \end{aligned}

{ ( 1 ) = ( 2 ) : R 1 = 8 R 2 9 R 3 . . . ( 4 ) ( 2 ) = ( 3 ) : 5 R 1 = 8 R 2 + 3 R 3 . . . ( 5 ) \begin{cases} (1)=(2): & R_1 = 8R_2-9R_3 & ...(4) \\ (2)=(3): & 5R_1 = 8R_2+3R_3 & ...(5) \end{cases}

( 4 ) + 3 ( 5 ) : 16 R 1 = 32 R 2 R 1 = 2 R 2 (4)+3(5): \quad 16R_1 = 32R_2 \implies R_1=2R_2

( 4 ) : 2 R 2 = 8 R 2 9 R 3 R 3 = 2 3 R 2 (4): \quad 2R_2 = 8R_2-9R_3 \implies R_3 = \dfrac 23 R_2

( 1 ) : R 1 R 2 R 1 + R 2 + R 3 = 40 Note that R 1 = 2 R 2 2 R 2 2 3 R 2 + R 3 = 40 2 3 R 2 + R 3 = 40 Note that R 3 = 2 3 R 2 R 3 + R 3 = 40 R 3 = 20 Ω R 2 = 3 2 R 3 = 30 Ω R 1 = 2 R 2 = 60 Ω \begin{aligned} (1): \quad \frac {{\color{#3D99F6}R_1}R_2}{{\color{#3D99F6}R_1}+R_2}+R_3 & = 40 & \small \color{#3D99F6} \text{Note that } R_1 = 2 R_2 \\ \frac {2R_2^2}{3R_2} + R_3 & = 40 \\ {\color{#3D99F6}\frac 23 R_2} + R_3 & = 40 & \small \color{#3D99F6} \text{Note that } R_3 = \frac 23 R_2 \\ {\color{#3D99F6}R_3} + R_3 & = 40 \\ \implies R_3 & = 20 \ \Omega \\ R_2 & = \frac 32 R_3 = 30 \ \Omega \\ R_1 & = 2 R_2 = 60 \ \Omega \end{aligned}

Therefore, the difference between the highest and lowest resistance among the three resistors: R 1 R 3 = 60 20 = 40 R_1-R_3 = 60 - 20 = \boxed{40} .

thank you for sharing solution.

am nu - 4 years, 1 month ago
Am Nu
Apr 20, 2017

Let x = R 1 R 2 + R 1 R 3 + R 2 R 3 x=R_1 R_2+R_1 R_3+R_2 R_3 .

For every kind of circuit above apply,

Those,

If sum them all,

So

With the same way, we can get,

If substituted to the initial form becomes,

So

So the difference between the maximum resistance and the minimum resistance of the three resistors above is 60Ω - 20Ω = 40Ω.

0 pending reports

×

Problem Loading...

Note Loading...

Set Loading...