Wavy Ring Gravity

A wavy ring is parametrized below:

x = cos θ y = sin θ z = sin θ 0 θ 2 π x = \cos \theta \\ y = \sin \theta \\ z = \sin \theta \\ 0 \leq \theta \leq 2 \pi

The ring has σ \sigma units of mass per unit curve length. There is a point particle of mass m m positioned at point T \vec{T} .

What is the magnitude of the gravitational force on the point particle?

Details and Assumptions:
1) σ = 1 \sigma = 1
2) m = 1 m = 1
3) Universal gravity constant G = 1 G = 1 (for simplicity). There is no ambient gravity
4) T = ( T x , T y , T z ) = ( 0 , 0 , 1 ) \vec{T} = (T_x,T_y,T_z) = (0,0,1)


The answer is 2.536.

This section requires Javascript.
You are seeing this because something didn't load right. We suggest you, (a) try refreshing the page, (b) enabling javascript if it is disabled on your browser and, finally, (c) loading the non-javascript version of this page . We're sorry about the hassle.

1 solution

Karan Chatrath
Jun 5, 2019

Let the position vector of a point on the ring be:

r = x i ^ + y j ^ + z k ^ \vec{r} = x \hat{i} + y \hat{j} + z \hat{k}

or:

r = cos ( θ ) i ^ + sin ( θ ) j ^ + sin ( θ ) k ^ \vec{r} = \cos(\theta) \hat{i} + \sin(\theta) \hat{j} + \sin(\theta) \hat{k}

The position vector of the point of interest (at which force needs to be computed) is:

r p = 0 i ^ + 0 j ^ + 1 k ^ \vec{r}_p = 0 \hat{i} + 0 \hat{j} + 1 \hat{k}

It is given that the mass per unit length of this ring is unity. Let us consider a small strip of wire which is a part of the ring. The length of this strip is the arc element which is computed as such:

d s = ( d x d θ ) 2 + ( d y d θ ) 2 + ( d z d θ ) 2 d θ ds = \sqrt{\bigg(\frac{dx}{d\theta}\bigg)^2 + \bigg(\frac{dy}{d\theta}\bigg)^2 + \bigg(\frac{dz}{d\theta}\bigg)^2} d\theta

Therefore, the mass of this element is:

d M = σ d s dM = \sigma ds

The gravitational force can be computed by using the inverse square law:

d F = d F x i ^ + d F y j ^ + d F z k ^ d\vec{F} = dF_x \hat{i} + dF_y \hat{j} + dF_z \hat{k}

or:

d F = G ( d M ) m r r p 2 ( r r p r r p ) d\vec{F} = \frac{G(dM)m}{\mid\vec{r} - \vec{r}_p\mid^2}\bigg(\frac{\vec{r} - \vec{r}_p}{\mid\vec{r} - \vec{r}_p\mid}\bigg)

The expressions for force elements in terms of θ \theta come out to be:

d F x = cos ( θ ) cos ( θ ) 2 + 1 ( sin ( θ ) 2 2 sin ( θ ) + 2 ) 3 / 2 d θ dF_x = \frac{\cos\left(\mathrm{\theta}\right)\,\sqrt{{\cos\left(\mathrm{\theta}\right)}^2+1}}{{\left({\sin\left(\mathrm{\theta}\right)}^2-2\,\sin\left(\mathrm{\theta}\right)+2\right)}^{3/2}} d\theta

d F y = sin ( θ ) 2 sin ( θ ) 2 ( sin ( θ ) 2 2 sin ( θ ) + 2 ) 3 / 2 d θ dF_y = \frac{\sin\left(\mathrm{\theta}\right)\,\sqrt{2-{\sin\left(\mathrm{\theta}\right)}^2}}{{\left({\sin\left(\mathrm{\theta}\right)}^2-2\,\sin\left(\mathrm{\theta}\right)+2\right)}^{3/2}}d\theta

d F z = ( sin ( θ ) 1 ) 2 sin ( θ ) 2 ( sin ( θ ) 2 2 sin ( θ ) + 2 ) 3 / 2 d θ dF_z = \frac{\left(\sin\left(\mathrm{\theta}\right)-1\right)\,\sqrt{2-{\sin\left(\mathrm{\theta}\right)}^2}}{{\left({\sin\left(\mathrm{\theta}\right)}^2-2\,\sin\left(\mathrm{\theta}\right)+2\right)}^{3/2}}d\theta

Each of these expressions need to be integrated from 0 0 to 2 π 2\pi .

The integrals are computed by breaking them into parts and numerically integrating: F x = 0 π / 2 d F x + π / 2 π d F x + π 3 π / 2 d F x + 3 π / 2 2 π d F x Fx = \int_{0}^{\pi/2}dF_x + \int_{\pi/2}^{\pi}dF_x + \int_{\pi}^{3\pi/2}dF_x + \int_{3\pi/2}^{2\pi}dF_x

Same can be done for the Y and Z components.

The required answer is:

F = F x 2 + F y 2 + F z 2 F = \sqrt{F_x^2 + F_y^2 + F_z^2}

Which comes out to be: 2.536

0 pending reports

×

Problem Loading...

Note Loading...

Set Loading...