Way too Big to Count

Level pending

A marker is placed at the origin in a 500 500 -dimensional coordinate system. The marker has 1000 1000 moves, and each move consists of changing one coordinate by exactly 1. Find the last three digits of the number of ways the marker can get to a point that is at least 500 500 units away from the origin.

Details and assumptions

The marker has no restrictions on movement, it can move in any direction, forwards or backwards along any axis any time.

The marker can end with any nonnegative number of moves remaining.

The marker is forced to stop if it reaches a point at least 500 500 units away from the origin.


The answer is 0.

This section requires Javascript.
You are seeing this because something didn't load right. We suggest you, (a) try refreshing the page, (b) enabling javascript if it is disabled on your browser and, finally, (c) loading the non-javascript version of this page . We're sorry about the hassle.

1 solution

Kenny Lau
Jan 2, 2014
  • The marker needs to move at least 500 moves before the marker can reach a point at least 500 units away from the origin.
  • It can stop at any of the 500 dimensions, leaving you 1000 500 = 500 1000-500=500 moves to stop at.
  • The above two points give you 500 × 500 = 250000 500\times500=250000 possibilities already.
  • The 500 dimensions are all the same and interchangeable.
  • You'll at last have 250000 250000 multiplied by some whole number.

    - The product will always have 000 \boxed{000} at the end.

  • Il faut que la marque mette au moins 500 pas avant qu'elle puisse atteindre un point qui est au moins 500 unités de l'origine.

  • Elle peut arrêter à tous les dimensions, et il a donc 1000 500 = 500 1000-500=500 pas possibles à arrêter à.
  • Les deux points au-dessus t'ont déjà donné(e) 500 × 500 = 250000 500\times500=250000 possibilités.
  • Les 500 dimensions sont toutes pareilles et interchangeables.
  • Tu auras enfin 250000 250000 fois quelque nombre entier.
  • Le produit aura toujours à la fin 000 \boxed{000} .

0 pending reports

×

Problem Loading...

Note Loading...

Set Loading...