We all love primes!

Let a a and b b be positive integers and p p a prime number satisfying a 2 ( b a ) b + a = p 2 \dfrac{a^{2}(b-a)}{b+a}=p^{2} . Find a + b + p a+b+p .


The answer is 19.

This section requires Javascript.
You are seeing this because something didn't load right. We suggest you, (a) try refreshing the page, (b) enabling javascript if it is disabled on your browser and, finally, (c) loading the non-javascript version of this page . We're sorry about the hassle.

2 solutions

Ishan Singh
Jun 1, 2016

Given : a 2 ( b a ) ( b + a ) = p 2 \dfrac{a^2(b-a)}{(b+a)} = p^2

( b a ) = 2 a p 2 a 2 p 2 \implies (b-a) = \dfrac{2ap^2}{a^2 - p^2}

Case 1: gcd ( a , p ) = 1 \gcd(a,p) = 1

We have,

( b a ) = 2 a p 2 ( a + p ) ( a p ) (b-a) = \dfrac{2ap^2}{(a+p)(a-p)}

gcd ( a + p , p 2 ) gcd ( a + p , p ) = 1 gcd ( a + p , p 2 ) = 1 \gcd(a+p,p^2) | \gcd(a+p,p) = 1 \ \implies \gcd(a+p,p^2) =1

Similarly,

gcd ( a p , p 2 ) = gcd ( a + p , a ) = gcd ( a p , a ) = 1 \gcd(a-p,p^2) = \gcd(a+p,a) = \gcd(a-p,a) = 1

gcd ( a 2 p 2 , a p 2 ) = 1 \implies \gcd(a^2-p^2,ap^2) = 1

Since 2 a p 2 a 2 p 2 Z + \dfrac{2ap^2}{a^2-p^2} \in \mathbb{Z^{+}} , we have,

a 2 p 2 2 a^2-p^2|2

a 2 p 2 = 1 or 2 N o S o l u t i o n \implies a^2 - p^2 = 1 \ \text{or} \ 2 \implies \mathrm{No \ Solution}

Case 2: gcd ( a , p ) = p \gcd(a,p) = p

Let a = λ p ; gcd ( λ , p ) = 1 a = \lambda p \ ; \ \gcd(\lambda , p) = 1

b λ p = 2 λ p λ 2 1 \implies b - \lambda p = \dfrac{2\lambda p}{\lambda ^2 -1}

Since, 2 λ p λ 2 1 Z + \dfrac{2\lambda p}{\lambda ^2 -1} \in \mathbb{Z^+} and gcd ( λ , λ 2 1 ) = 1 \gcd (\lambda , \lambda ^2 - 1) = 1 , we have,

λ 2 1 ( 2 p ) \lambda ^2 - 1 | (2p)

( λ + 1 ) ( λ 1 ) ( 2 p ) (\lambda+1)(\lambda-1)|(2p)

Note that λ + 1 > λ 1 \lambda +1 > \lambda -1

λ + 1 = p ; λ 1 = 2 N o S o l u t i o n \implies \lambda + 1 = p \ ; \ \lambda -1 =2 \implies \mathrm{No \ Solution}

or,

λ + 1 = 2 p ; λ 1 = 1 N o S o l u t i o n \lambda + 1 = 2p \ ; \ \lambda -1 =1 \implies \mathrm{No \ Solution}

or,

λ + 1 = p ; λ 1 = 1 λ = 2 ; p = 3 \lambda + 1 = p \ ; \ \lambda -1 =1 \implies \lambda =2 \ ; \ p=3

Substituting back, we have,

a = 6 ; b = 10 ; p = 3 a =6 \ ; \ b=10 \ ; \ p=3

a + b + c = 19 \implies a+b+c =\boxed{19}

Exactly as mine, as I said in some problem earlier it gets similar even at this heights jaja

Patrick Chatain
Jun 1, 2016

Rearranging the given equation we get: a 2 ( b a ) = ( b + a ) p 2 a^2(b-a)=(b+a)p^2 \implies a 2 b a 3 = p 2 b + p 2 a a^2b-a^3=p^2b+p^2a \implies a 2 b p 2 b = a 3 + p 2 a a^2b-p^2b=a^3+p^2a \implies b ( a 2 p 2 ) = a ( a 2 + p 2 ) b(a^2-p^2)=a(a^2+p^2) (1)

Now if a prime k k divides a 2 p 2 a^2-p^2 and a 2 + p 2 a^2+p^2 then it also divides ( a 2 + p 2 ) ( a 2 p 2 ) = 2 p 2 (a^2+p^2)-(a^2-p^2)=2p^2 so k = p k=p or k = 2 k=2

And if a prime k k divides a 2 p 2 a^2-p^2 but not a 2 + p 2 a^2+p^2 then k k divides a a by equation 1. But then k k divides a 2 p 2 a^2-p^2 and k k divides a a so k k divides p 2 p^2 . Thus k = p k=p .

So the only prime factors of a 2 p 2 a^2-p^2 are 2 2 and p p

Now if 4 \mid a 2 p 2 a^2-p^2 and 4 \mid a 2 + p 2 a^2+p^2 then 4 \mid 2 p 2 2p^2 so p = 2 p=2 . Then the only prime factor of a 2 p 2 = a 2 4 a^2-p^2=a^2-4 is 2. So both ( a 2 ) (a-2) and ( a + 2 ) (a+2) are powers of 2 which means a = 6 a=6 . Substituting p = 2 p=2 and a = 6 a=6 in the original equation gives b = 7.5 b=7.5 which is not an integer.

Now if 4 \mid a 2 p 2 a^2-p^2 and 4 ∤ \not\mid a 2 + p 2 a^2+p^2 then 2 \mid a a (by equation 1) so 4 \mid a 2 a^2 and thus 4 \mid p 2 p^2 \implies 2 \mid p p \implies 2 = p 2=p which we showed has no solution. Then 4 ∤ \not\mid a 2 p 2 a^2-p^2

Now if p 4 p^4 \mid a 2 p 2 a^2-p^2 then p 2 p^2 \mid a a (as ( a 2 + p 2 ) ( a 2 p 2 ) = 2 p 2 (a^2+p^2)-(a^2-p^2)=2p^2 and p 2 p\neq2 so it follows from equation 1) and thus p 4 p^4 \mid a 2 a^2 . But then p 4 p^4 \mid a 2 p 2 a^2-p^2 and p 4 p^4 \mid a 2 a^2 so p 4 p^4 \mid p 2 p^2 which is not possible. So p 4 p^4 ∤ \not\mid a 2 p 2 a^2-p^2

Thus a 2 p 2 = 2 k p n a^2-p^2=2^kp^n where k = 0 , 1 k=0,1 n = 0 , 1 , 2 , 3 n=0,1,2,3

  • a 2 p 2 = 2 a^2-p^2=2 \implies ( a + p ) ( a p ) = 2 (a+p)(a-p)=2 but a + p > 2 a+p>2 so no solution
  • a 2 p 2 = 2 p a^2-p^2=2p \implies ( a + p ) ( a p ) = 2 p (a+p)(a-p)=2p \implies ( a + p ) = p (a+p)=p and ( a p ) = 2 (a-p)=2 \implies no solution

or ( a + p ) = 2 p (a+p)=2p and ( a p ) = 1 (a-p)=1 \implies no solution

  • a 2 p 2 = 2 p 2 a^2-p^2=2p^2 \implies ( a + p ) ( a p ) = 2 p 2 (a+p)(a-p)=2p^2 \implies ( a + p ) = 2 p (a+p)=2p and ( a p ) = p (a-p)=p \implies no solution

or ( a + p ) = 2 p 2 (a+p)=2p^2 and ( a p ) = 1 (a-p)=1 \implies no integer solution

or ( a + p ) = p 2 (a+p)=p^2 and ( a p ) = 2 (a-p)=2 \implies no integer solution

  • a 2 p 2 = 2 p 3 a^2-p^2=2p^3 \implies ( a + p ) ( a p ) = 2 p 3 (a+p)(a-p)=2p^3 \implies ( a + p ) = 2 p 3 (a+p)=2p^3 and ( a p ) = 1 (a-p)=1 \implies no integer solution

or ( a + p ) = 2 p 2 (a+p)=2p^2 and ( a p ) = p (a-p)=p \implies no positive integer solutions

or ( a + p ) = p 3 (a+p)=p^3 and ( a p ) = 2 (a-p)=2 \implies no integer solution

or ( a + p ) = p 2 (a+p)=p^2 and ( a p ) = 2 p (a-p)=2p \implies solution for p p is not prime

  • a 2 p 2 = 1 a^2-p^2=1 \implies ( a + p ) ( a p ) = 1 (a+p)(a-p)=1 so no solution
  • a 2 p 2 = p a^2-p^2=p \implies ( a + p ) ( a p ) = p (a+p)(a-p)=p \implies ( a + p ) = p (a+p)=p and ( a p ) = 1 (a-p)=1 \implies no solution
  • a 2 p 2 = p 2 a^2-p^2=p^2 \implies ( a + p ) ( a p ) = p 2 (a+p)(a-p)=p^2 \implies ( a + p ) = p 2 (a+p)=p^2 and ( a p ) = 1 (a-p)=1 \implies no integer solution
  • a 2 p 2 = p 3 a^2-p^2=p^3 \implies ( a + p ) ( a p ) = p 3 (a+p)(a-p)=p^3 \implies ( a + p ) = p 3 (a+p)=p^3 and ( a p ) = 1 (a-p)=1 \implies no positive integer solutions

or ( a + p ) = p 2 (a+p)=p^2 and ( a p ) = p (a-p)=p which yields p = 3 , a = 6 p=3 , a=6 .

So p = 3 , a = 6 p=3 , a=6 are the only possible values for a a and p p .

Substituting these values in the original expression we find b = 10 b=10 so ( a , b , p ) = ( 6 , 10 , 3 ) (a,b,p)=(6,10,3) is the only solution and a + b + p = 6 + 10 + 3 = 19 a+b+p=6+10+3=19

0 pending reports

×

Problem Loading...

Note Loading...

Set Loading...