Trig and trig inverse integrand!?

Calculus Level 4

1 1 sin ( arcsin x ) × sin ( arccos x ) × cos ( arccos x ) × cos ( arcsin x ) d x \int _{ -1 }^{ 1 } \sin { (\arcsin { x }) } \times \sin { (\arccos { x }) } \times \cos { (\arccos { x }) } \times \cos { (\arcsin { x }) } \, dx

If the integral above can be expressed in the form A B \dfrac { A }{ B } , where A { A } and B { B } are positive coprime integers, find A + B A+B .


If you enjoyed the problem, here is part 2 .

This problem is original.


The answer is 19.

This section requires Javascript.
You are seeing this because something didn't load right. We suggest you, (a) try refreshing the page, (b) enabling javascript if it is disabled on your browser and, finally, (c) loading the non-javascript version of this page . We're sorry about the hassle.

1 solution

Rishabh Jain
Jan 8, 2016

sin ( sin 1 x ) = cos ( cos 1 x ) = x \sin(\sin^{-1}x)=\cos(\cos^{-1}x)=\color{#69047E}{x} cos ( sin 1 x ) = sin ( cos 1 x ) = 1 x 2 \cos(\sin^{-1}x)=\sin(\cos^{-1}x)=\color{#69047E}{\sqrt{1-x^2}} Integral simplifies to:
I = 1 1 x 2 ( 1 x 2 ) = 2 3 2 5 = 4 15 I=\int _{ -1 }^{ 1 }x^2(1-x^2)=\frac{2}{3}-\frac{2}{5}=\color{#D61F06}{\frac{4}{15}} Hence, 15+4=19.

0 pending reports

×

Problem Loading...

Note Loading...

Set Loading...