We Complement Each Other.

Algebra Level 2

Let f ( x ) = 1 1 + 2 lg x + 1 1 + 4 lg x + 1 1 + 8 lg x f(x) = \dfrac{1}{1+2^{\lg x}} + \dfrac{1}{1+4^{\lg x}} + \dfrac{1}{1+8^{\lg x}} . Find the value of f ( x ) + f ( 1 x ) f(x) + f \left(\dfrac{1}{x}\right) .

Notation: lg ( ) = log 10 ( ) \lg (\cdot) = \log_{10} (\cdot) denotes logarithm to the base 10.


The answer is 3.

This section requires Javascript.
You are seeing this because something didn't load right. We suggest you, (a) try refreshing the page, (b) enabling javascript if it is disabled on your browser and, finally, (c) loading the non-javascript version of this page . We're sorry about the hassle.

2 solutions

Chew-Seong Cheong
Oct 30, 2019

f ( x ) + f ( 1 x ) = 1 1 + 2 lg x + 1 1 + 4 lg x + 1 1 + 8 lg x + 1 1 + 2 lg 1 x + 1 1 + 4 lg 1 x + 1 1 + 8 lg 1 x = 1 1 + 2 lg x + 1 1 + 2 lg x + 1 1 + 4 lg x + 1 1 + 4 lg x + 1 1 + 8 lg x + 1 1 + 8 lg x = 1 1 + 2 lg x + 2 lg x 2 lg x + 1 + 1 1 + 4 lg x + 4 lg x 4 lg x + 1 + 1 1 + 8 lg x + 8 lg x 8 lg x + 1 = 1 + 1 + 1 = 3 \begin{aligned} f(x) + \blue{f\left(\frac 1x\right)} & = \frac 1{1+2^{\lg x}} + \frac 1{1+4^{\lg x}} + \frac 1{1+8^{\lg x}} + \blue{\frac 1{1+2^{\lg \frac 1x}} + \frac 1{1+4^{\lg \frac 1x}} + \frac 1{1+8^{\lg \frac 1x}}} \\ & = \frac 1{1+2^{\lg x}} + \blue{\frac 1{1+2^{-\lg x}}} + \frac 1{1+4^{\lg x}} + \blue{\frac 1{1+4^{-\lg x}}} + \frac 1{1+8^{\lg x}} + \blue{\frac 1{1+8^{-\lg x}}} \\ & = \frac 1{1+2^{\lg x}} + \blue{\frac {2^{\lg x}}{2^{\lg x}+1}} + \frac 1{1+4^{\lg x}} + \blue{\frac {4^{\lg x}}{4^{\lg x}+1}} + \frac 1{1+8^{\lg x}} + \blue{\frac {8^{\lg x}}{8^{\lg x}+1}} \\ & = 1 + 1 + 1 = \boxed 3 \end{aligned}

Yashas Ravi
Oct 30, 2019

We can substitute in x = 10 x=10 (or any number, but 10 10 is convenient) to obtain the answer of 3 3 .

Isn't 1 a more convenient x

Kenny O. - 1 year, 7 months ago

Yes, any real number greater than 0 works :)

Yashas Ravi - 1 year, 7 months ago

Well, that would show that 3 is the only answer that could be true for all values of x. It would remain to be shown that 3 is the actual answer for all values of x.

Richard Desper - 1 year, 7 months ago

0 pending reports

×

Problem Loading...

Note Loading...

Set Loading...