We have a directrix and we have a focal point. What's missing?

Algebra Level 5

There is a parabola with directrix defined by the line

3 x + 7 y = 21 3x + 7y = 21

and focal point

P = ( 3 , 3 ) . P = (3, 3).

The equation of the parabola can be written as

a x 2 + b x y + c y 2 + d x + e y + f = 0 , ax^2 + bxy + cy^2 + dx + ey + f = 0,

where the gcd ( a , b , c , d , e , f ) = 1 \gcd\big(|a|, |b|, |c|, |d|, |e|, |f|\big) = 1 . Find the maximum value of

a + b + c + d + e + f . a + b + c + d + e + f.


The answer is 343.

This section requires Javascript.
You are seeing this because something didn't load right. We suggest you, (a) try refreshing the page, (b) enabling javascript if it is disabled on your browser and, finally, (c) loading the non-javascript version of this page . We're sorry about the hassle.

4 solutions

Ayush Khare
Aug 7, 2014

parabola is a locus of a point whose dist from a fixed point and fixed line are equal.

[(3x+7y-21)^2]/(58)^1/2=[(x-3)^2+(y-3)^2]^(1/2)

solving we get

49x^2+9y^2-42xy-222x-54y+603=0

gcd=1

answer=49+9-42-222-54+603 =343

Cause the perpendicular distance of the point from a line is defined as eq of line/(a^2+b^2)^1/2

Vishwesh Ramanathan - 6 years, 9 months ago

why u have taken 58 here ??? i mean i didnt undrstnd this

Khushboo Dixit - 6 years, 10 months ago
Romeo, Jr Madrona
Jul 22, 2017

Given the focus is at F(3,3) and let P(x,y) be a point on the parabola.

By definition of parabola, the distance between the focus (F) and a point on the parabola is equal to the distance bewteen the point of the parabola P and the line 3x+7y=21, i.e.,

Sqrt [ (x-3)^2+(y-3)^2) ] = | 3x+7y-21|\ sqrt(3^2+7^2)

Since we are just solving for the sum of the coefficients of the terms once expanded and simplified theb we just let x=y=1. So, we have

Sqrt [ 4+4] = |3+7-21|\sqrt(58)

Sqrt [8(58)]= |-11|

Square both sides,

343-121=343.

So the answer is 343.

@Andres Rico M. III Gonzales

Akhilesh Vibhute
Dec 11, 2015

LOL maximum has nothing to do with that expression answer is simply 343

Soumo Mukherjee
Jan 7, 2015

Let ( h , k ) \displaystyle \left( h,k \right) be any point on the parabola. Then by the definition of the parabola, it must satisfy the following equation: ( h 3 ) 2 + ( k 3 ) 2 = 21 3 h 7 k ( 3 ) 2 + ( 7 ) 2 \displaystyle \sqrt { { \left( h-3 \right) }^{ 2 }{ +\left( k-3 \right) }^{ 2 } } =\cfrac { 21-3h-7k }{ \sqrt { { \left( 3 \right) }^{ 2 }{ +\left( 7 \right) }^{ 2 } } } .

On simplifying the equation and bringing it down to the form a x 2 + b x y + c y 2 + d x + e y + f = 0 \displaystyle a{ x }^{ 2 }+bxy+c{ y }^{ 2 }+dx+ey+f=0 , and then comparing the coefficients then adding [ i . e . a + b + c + d + e + f ] \displaystyle \left[ i.e.\quad a+b+c+d+e+f \right] we get the answer as 343 \displaystyle \boxed{343} .

Here is a glance of the computation ( h 3 ) 2 + ( k 3 ) 2 = 21 3 h 7 k ( 3 ) 2 + ( 7 ) 2 ( h 3 ) 2 + ( k 3 ) 2 = ( 21 3 h 7 k ) 2 58 h 2 6 h + 9 + k 2 6 k + 9 = ( 21 ( 3 h + 7 k ) ) 2 58 58 ( h 2 6 h + 9 + k 2 6 k + 9 ) = 21 2 + 9 h 2 + 49 k 2 + 42 h k 42.3 h 42.7 k 58 h 2 + 58 k 2 348 h 348 k + 1044 = 441 + 9 h 2 + 49 k 2 + 42 h k 126 h 294 k 49 h 2 + 9 k 2 22 h 54 k 42 h + 603 = 0 \sqrt { { \left( h-3 \right) }^{ 2 }{ +\left( k-3 \right) }^{ 2 } } =\cfrac { 21-3h-7k }{ \sqrt { { \left( 3 \right) }^{ 2 }{ +\left( 7 \right) }^{ 2 } } } \\ \Rightarrow { \left( h-3 \right) }^{ 2 }{ +\left( k-3 \right) }^{ 2 }=\cfrac { { \left( 21-3h-7k \right) }^{ 2 } }{ 58 } \\ \Rightarrow { h }^{ 2 }-6h+9+{ k }^{ 2 }-6k+9=\cfrac { { \left( 21-\left( 3h+7k \right) \right) }^{ 2 } }{ 58 } \\ \Rightarrow 58\left( { h }^{ 2 }-6h+9+{ k }^{ 2 }-6k+9 \right) ={ 21 }^{ 2 }+{ 9h }^{ 2 }+{ 49k }^{ 2 }+42hk-42.3h-42.7k\\ \Rightarrow 58{ h }^{ 2 }+58{ k }^{ 2 }-348h-348k+1044=441+9{ h }^{ 2 }+{ 49k }^{ 2 }+42hk-126h-294k\\ \Rightarrow 49{ h }^{ 2 }+9{ k }^{ 2 }-22h-54k-42h+603=0 .

0 pending reports

×

Problem Loading...

Note Loading...

Set Loading...