We just have to factorise it. It's so simple! Or is it?

Algebra Level 3

x 2 3 x 1 x 2 + x + 1 3 A = max ( x ) B = min ( x ) \left| \frac { { x }^{ 2 }-3x-1 }{ { x }^{ 2 }+x+1 } \right| \ge 3\\ \\ A=\max { (x) } \\ B=\min { (x) } \\

Find A B ( A B ) AB\left( A-B \right) .


The answer is 2.00.

This section requires Javascript.
You are seeing this because something didn't load right. We suggest you, (a) try refreshing the page, (b) enabling javascript if it is disabled on your browser and, finally, (c) loading the non-javascript version of this page . We're sorry about the hassle.

1 solution

Ayush Verma
Apr 5, 2015

root\quad of\quad { x }^{ 2 }-3x-1=0\\ \\ x=\cfrac { 3\pm \sqrt { 13 } }{ 2 } =3.30277,-0.30277\\ \\ So\quad { x }^{ 2 }-3x-1=\left\{ +ve\quad for\quad x\notin \left( -0.30277,3.30277 \right) \\ \\ -ve\quad for\quad x\in \left( -0.30277,3.30277 \right) \right \\ \\ \\ { x }^{ 2 }+x+1\quad always\quad +ve,so\\ \\ \\ 1.If\quad { x }^{ 2 }-3x-1>0\quad or\quad x\notin \left( -0.30277,3.30277 \right) \\ \\ \left| \cfrac { { x }^{ 2 }-3x-1 }{ { x }^{ 2 }+x+1 } \right| =\cfrac { { x }^{ 2 }-3x-1 }{ { x }^{ 2 }+x+1 } \\ \\ \Rightarrow \cfrac { { x }^{ 2 }-3x-1 }{ { x }^{ 2 }+x+1 } \ge 3\\ \\ \Rightarrow { x }^{ 2 }+3x+2\le 0\\ \\ \Rightarrow x\in \left[ -2,-1 \right] \\ \\ which\quad is\quad not\quad in\quad \left( -0.30277,3.30277 \right) \\ \\ 2.If\quad { x }^{ 2 }-3x-1<0\quad or\quad x\in \left( -0.30277,3.30277 \right) \\ \\ \left| \cfrac { { x }^{ 2 }-3x-1 }{ { x }^{ 2 }+x+1 } \right| =-\cfrac { { x }^{ 2 }-3x-1 }{ { x }^{ 2 }+x+1 } \\ \\ \Rightarrow -\cfrac { { x }^{ 2 }-3x-1 }{ { x }^{ 2 }+x+1 } \ge 3\\ \\ \Rightarrow 4{ x }^{ 2 }+2\le 0\quad not\quad possible\\ \\ so\quad by\quad we\quad see\quad that\quad given\quad condition\quad satisfied\quad only\quad for\quad x\in \left[ -2,-1 \right] \\ \\ A-1,B=-2\Rightarrow Ans=\left( -1 \right) \times \left( -2 \right) \left( -1+2 \right) =2

The root of x 2 + 3 x + 2 a r e 1 a n d 2 i n s t e a d o f 1 a n d 2 { x }^{ 2 }+3x+2\quad are\quad -1\quad and\quad -2\quad instead\quad of\quad 1\quad and\quad 2 . That is by luck you got right : )

Mayank Chaturvedi - 6 years, 1 month ago

Log in to reply

Thank you very much.

Ayush Verma - 6 years, 1 month ago

0 pending reports

×

Problem Loading...

Note Loading...

Set Loading...