∣ ∣ ∣ ∣ x 2 + x + 1 x 2 − 3 x − 1 ∣ ∣ ∣ ∣ ≥ 3 A = max ( x ) B = min ( x )
Find A B ( A − B ) .
This section requires Javascript.
You are seeing this because something didn't load right. We suggest you, (a) try
refreshing the page, (b) enabling javascript if it is disabled on your browser and,
finally, (c)
loading the
non-javascript version of this page
. We're sorry about the hassle.
The root of x 2 + 3 x + 2 a r e − 1 a n d − 2 i n s t e a d o f 1 a n d 2 . That is by luck you got right : )
Problem Loading...
Note Loading...
Set Loading...
root\quad of\quad { x }^{ 2 }-3x-1=0\\ \\ x=\cfrac { 3\pm \sqrt { 13 } }{ 2 } =3.30277,-0.30277\\ \\ So\quad { x }^{ 2 }-3x-1=\left\{ +ve\quad for\quad x\notin \left( -0.30277,3.30277 \right) \\ \\ -ve\quad for\quad x\in \left( -0.30277,3.30277 \right) \right \\ \\ \\ { x }^{ 2 }+x+1\quad always\quad +ve,so\\ \\ \\ 1.If\quad { x }^{ 2 }-3x-1>0\quad or\quad x\notin \left( -0.30277,3.30277 \right) \\ \\ \left| \cfrac { { x }^{ 2 }-3x-1 }{ { x }^{ 2 }+x+1 } \right| =\cfrac { { x }^{ 2 }-3x-1 }{ { x }^{ 2 }+x+1 } \\ \\ \Rightarrow \cfrac { { x }^{ 2 }-3x-1 }{ { x }^{ 2 }+x+1 } \ge 3\\ \\ \Rightarrow { x }^{ 2 }+3x+2\le 0\\ \\ \Rightarrow x\in \left[ -2,-1 \right] \\ \\ which\quad is\quad not\quad in\quad \left( -0.30277,3.30277 \right) \\ \\ 2.If\quad { x }^{ 2 }-3x-1<0\quad or\quad x\in \left( -0.30277,3.30277 \right) \\ \\ \left| \cfrac { { x }^{ 2 }-3x-1 }{ { x }^{ 2 }+x+1 } \right| =-\cfrac { { x }^{ 2 }-3x-1 }{ { x }^{ 2 }+x+1 } \\ \\ \Rightarrow -\cfrac { { x }^{ 2 }-3x-1 }{ { x }^{ 2 }+x+1 } \ge 3\\ \\ \Rightarrow 4{ x }^{ 2 }+2\le 0\quad not\quad possible\\ \\ so\quad by\quad we\quad see\quad that\quad given\quad condition\quad satisfied\quad only\quad for\quad x\in \left[ -2,-1 \right] \\ \\ A-1,B=-2\Rightarrow Ans=\left( -1 \right) \times \left( -2 \right) \left( -1+2 \right) =2