We keeping score?

Calculus Level 5

lim x 0 sinh ( sin x ) sin ( sinh x ) x A \lim_{x\to0} \dfrac{\sinh(\sin x) - \sin (\sinh x) }{x^A}

For some constant A A , the limit above is finite and non-zero. Let the L L denote the value of this limit. Find A ÷ L A\div L .


The answer is 315.

This section requires Javascript.
You are seeing this because something didn't load right. We suggest you, (a) try refreshing the page, (b) enabling javascript if it is disabled on your browser and, finally, (c) loading the non-javascript version of this page . We're sorry about the hassle.

1 solution

Otto Bretscher
Dec 19, 2015

sinh ( x x 3 3 ! + x 5 5 ! x 7 7 ! + . . ) sin ( x + x 3 3 ! + x 5 5 ! + x 7 7 ! + . . ) = x x 5 15 + x 7 90 . . ( x x 5 15 x 7 90 ) = x 7 45 + . . \sinh\left(x-\frac{x^3}{3!}+\frac{x^5}{5!}-\frac{x^7}{7!}+..\right)-\sin\left(x+\frac{x^3}{3!}+\frac{x^5}{5!}+\frac{x^7}{7!}+..\right)=x-\frac{x^5}{15}+\frac{x^7}{90}-..-\left(x-\frac{x^5}{15}-\frac{x^7}{90}\right)=\frac{x^7}{45}+.. Thus A = 7 , L = 1 45 A=7, L=\frac{1}{45} and A L = 7 45 = 315 \frac{A}{L}=7*45=\boxed{315}

0 pending reports

×

Problem Loading...

Note Loading...

Set Loading...