We Need To Go Deeper - 2

Algebra Level 2

x , x , x , x \sqrt x , \qquad \sqrt{\sqrt x}, \qquad \sqrt{\sqrt{\sqrt x}} , \qquad \sqrt{\sqrt{\sqrt{\sqrt x}}}

If x > 1 x>1 , which of the numbers above is the smallest?

x \sqrt x x \sqrt{\sqrt{\sqrt x}} x \sqrt{\sqrt{\sqrt{\sqrt x}}} x \sqrt{\sqrt x}

This section requires Javascript.
You are seeing this because something didn't load right. We suggest you, (a) try refreshing the page, (b) enabling javascript if it is disabled on your browser and, finally, (c) loading the non-javascript version of this page . We're sorry about the hassle.

1 solution

Hung Woei Neoh
Jul 19, 2016

Theorem:

If x > 1 x>1 and a > b a>b , we have

x a > x b x^a>x^b

Example: x = 2 , a = 4 , b = 2 x a = 2 4 = 16 , x b = 2 2 = 4 , 16 > 4 x=2,\;a=4,\;b=2\implies x^a=2^4=16,\;x^b=2^2=4,\implies16>4


Now, we convert all the roots into indices:

x = x 1 / 2 x = ( x 1 / 2 ) 1 / 2 = x 1 / 2 × 1 / 2 = x 1 / 4 x = ( ( x 1 / 2 ) 1 / 2 ) 1 / 2 = x 1 / 2 × 1 / 2 × 1 / 2 = x 1 / 8 x = ( ( ( x 1 / 2 ) 1 / 2 ) 1 / 2 ) 1 / 2 = x 1 / 2 × 1 / 2 × 1 / 2 × 1 / 2 = x 1 / 16 \sqrt{x}=x^{1/2}\\ \sqrt{\sqrt{x}}=\left(x^{1/2}\right)^{1/2}=x^{1/2 \times 1/2}=x^{1/4}\\ \sqrt{\sqrt{\sqrt{x}}}=\left(\left(x^{1/2}\right)^{1/2}\right)^{1/2}=x^{1/2 \times 1/2 \times 1/2}=x^{1/8}\\ \sqrt{\sqrt{\sqrt{\sqrt{x}}}}=\left(\left(\left(x^{1/2}\right)^{1/2}\right)^{1/2}\right)^{1/2}=x^{1/2 \times 1/2 \times 1/2 \times 1/2}=x^{1/16}

Since x > 1 x>1 and 1 2 > 1 4 > 1 8 > 1 16 \dfrac{1}{2}>\dfrac{1}{4}>\dfrac{1}{8}>\dfrac{1}{16} , we have

x 1 / 2 > x 1 / 4 > x 1 / 8 > x 1 / 16 x > x > x > x x^{1/2}>x^{1/4}>x^{1/8}>x^{1/16}\\ \sqrt{x}>\sqrt{\sqrt{x}}>\sqrt{\sqrt{\sqrt{x}}}>\sqrt{\sqrt{\sqrt{\sqrt{x}}}}

Therefore, the smallest number is x \boxed{\sqrt{\sqrt{\sqrt{\sqrt{x}}}}}

0 pending reports

×

Problem Loading...

Note Loading...

Set Loading...