Weather Map

Calculus Level 5

Today's weather map shows a low-pressure and a high-pressure area. Within the unit circle x 2 + y 2 < 1 x^2 + y^2 < 1 around the origin of the pressure is described by the two-dimensional function p ( x , y ) = 55.1 hPa ( x 3 x 2 y + x y 2 y 3 x + y ) + 1010 hPa . p(x,y) = 55.1\,\text{hPa} \cdot \big( x^3 - x^2 y + x y^2 - y^3 - x + y \big) + 1010 \,\text{hPa}. What is the difference Δ p = p high p low \Delta p = p_\text{high} - p_\text{low} between the maximum pressure and minimum pressure?

Give your answer in units of hectopascals and round it to the nearest integer.


The answer is 60.

This section requires Javascript.
You are seeing this because something didn't load right. We suggest you, (a) try refreshing the page, (b) enabling javascript if it is disabled on your browser and, finally, (c) loading the non-javascript version of this page . We're sorry about the hassle.

2 solutions

Mark Hennings
Nov 9, 2017

Using polar coordinates we see that p ( x , y ) = x 3 x 2 y + x y 2 y 3 x + y = ( x y ) ( x 2 + y 2 1 ) = r ( r 2 1 ) ( cos θ sin θ ) = 2 r ( r 2 1 ) cos ( θ + 1 4 π ) p(x,y) \; = \; x^3 - x^2y + xy^2 - y^3 - x + y \; = \; (x-y)(x^2 + y^2 - 1) \; = \; r(r^2-1)(\cos\theta - \sin\theta) \; = \; \sqrt{2}r(r^2-1)\cos(\theta+\tfrac14\pi) Maximising the function of r r , we see that the extreme values of p p thus occur when θ = 1 4 π , 3 4 π \theta = -\tfrac14\pi,\tfrac34\pi and r = 1 3 r = \tfrac{1}{\sqrt{3}} , and the extreme values of p p are ± 8 27 \pm\sqrt{\tfrac{8}{27}} . Thus the answer is 55.1 × 2 × 8 27 = 59.98528215 60 55.1 \times 2 \times \sqrt{\tfrac{8}{27}} \; = \; 59.98528215 \; \approx \; \boxed{60} hectopascals.

We consider the function p ( x , y ) = x 3 x 2 y + x y 2 y 3 x + y p(x,y) = x^3 - x^2 y + x y^2 - y^3 - x + y We search for zeros of the gradient p = ( p x p y ) = ( 3 x 2 2 x y + y 2 1 x 2 + 2 x y 3 y 2 + 1 ) = ! 0 \vec \nabla p = \left( \begin{array}{c} \frac{\partial p}{\partial x} \\ \frac{\partial p}{\partial y} \end{array} \right) = \left( \begin{array}{c} 3 x^2 - 2 x y + y^2 - 1 \\ - x^2 + 2 x y - 3 y^2 + 1 \end{array} \right) \stackrel{!}{=} 0 Adding both equation for the x- and y-component results p x + p y = 2 ( x 2 y 2 ) = 0 \frac{\partial p}{\partial x} + \frac{\partial p}{\partial y} = 2 (x^2 - y^2) = 0 Therefore, y = ± x y = \pm x . We can exclude the case y = x y = x , because this is an äquipotential line p ( x , x ) = 0 p(x,x) = 0 , so that there are no extrema. We consider only the case y = x y = -x . The x-component of the gradient results p x y = x = 3 x 2 + 2 x 2 + x 2 1 = 6 x 2 1 = 0 ( x ± , y ± ) = ± ( 1 6 , 1 6 ) \begin{aligned} \left.\frac{\partial p}{\partial x}\right|_{y = -x} &= 3 x^2 + 2 x^2 + x^2 - 1 = 6x^2 - 1 = 0 \\ \Rightarrow \quad (x_\pm, y_\pm) &= \pm \left( \frac{1}{\sqrt{6}}, -\frac{1}{\sqrt{6}}\right) \end{aligned} Evaluation of the function results p ( 1 5 , 1 5 ) = ( 2 3 ) 3 / 2 , p ( 1 5 , 1 5 ) = ( 2 3 ) 3 / 2 p\left(\frac{1}{\sqrt{5}},-\frac{1}{\sqrt{5}} \right) = - \left(\frac{2}{3}\right)^{3/2}, \qquad p\left(-\frac{1}{\sqrt{5}},\frac{1}{\sqrt{5}} \right) = \left(\frac{2}{3}\right)^{3/2} Therefore, the points correpond to the minimum and maximum, so that Δ p = p high p left = 2 ( 2 3 ) 3 / 2 1.089 \Delta p = p_\text{high} - p_\text{left} = 2 \left(\frac{2}{3}\right)^{3/2} \approx 1.089 (Multiplying this with the prefactor 55.1 hPa results a pressure difference of 60 hPa.) The fact that a minimum and a maximum actually exist, can be proved by the eigenvalues of the Hessian matrix: H ( x ± , y ± ) = ( 2 p x 2 p x y p x y 2 p y 2 ) = ( 6 x 2 y 2 x + 2 y 2 x + 2 y 2 x 6 y ) = ± 4 ( 2 3 ) 3 / 2 ( 2 1 1 2 ) 2 λ 1 1 2 λ = λ 2 4 λ + 3 = ! 0 λ = 1 , 3 \begin{aligned} H(x_\pm, y_\pm) &= \left( \begin{array}{cc} \frac{\partial^2 p}{\partial x^2} & \frac{\partial p}{\partial x \partial y} \\ \frac{\partial p}{\partial x \partial y} & \frac{\partial^2 p}{\partial y^2} \end{array} \right) \\ & = \left( \begin{array}{cc} 6x - 2y & -2x + 2y \\ -2x + 2y & 2x - 6y \end{array} \right) \\ &= \pm 4 \left( \frac{2}{3} \right)^{3/2} \left( \begin{array}{cc} 2 & -1 \\ -1 & 2 \end{array}\right) \\ \left| \begin{array}{cc} 2- \lambda & -1 \\ -1 & 2 - \lambda\end{array} \right| &= \lambda^2 - 4\lambda + 3 \stackrel{!}{=} 0 \quad \Rightarrow \quad \lambda = 1, 3 \end{aligned} Therefore, the Hessian is for ( x + , y + ) (x_+, y_+) positive definite and for ( x , y ) (x_-, y_-) negative definite.

0 pending reports

×

Problem Loading...

Note Loading...

Set Loading...